Leetcode347. Top K Frequent Elements
Leetcode347. Top K Frequent Elements
题目
这道题用来练习优先队列(二叉堆结构,Binary Tree)
思路
1.字典计数,按计数排序
2.使用优先队列,优先级就是出现次数
复杂度
字典计数
时间复杂度是 O ( n ) \mathcal{O}(n) O(n),统计个数用时n,
然后对n个数排序(python排序内部用TimSort算法)最差 O ( n l o g n ) \mathcal{O}(nlogn) O(nlogn),最好 O ( n ) \mathcal{O}(n) O(n),平均 O ( n l o g n ) \mathcal{O}(nlogn) O(nlogn),
空间复杂度也是 O ( n ) \mathcal{O}(n) O(n),新建了一个字典,TimSort最差 O ( n ) \mathcal{O}(n) O(n)
优先队列
时间复杂度 O ( n ) \mathcal{O}(n) O(n),统计个数用时n,建立优先队列n,见优先队列构建时间复杂度分析
空间复杂度,要将所有元素都放入队列中, O ( n ) \mathcal{O}(n) O(n)
代码
字典计数
字典计数可以自己写,在python中也有内置类(懒人版)可以用,如
collections.Counter.most_common()
from collections import Counter as ct
class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
return [el[0] for el in ct(nums).most_common(k)]
优先队列
内置优先队列
heapq.nlargest
class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
count = collections.Counter(nums)
return heapq.nlargest(k, count.keys(), key=count.get)
class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
count = collections.Counter(nums)
heap = [(value, key) for key, value in count.items()]
return [key for value, key in heapq.nlargest(k, heap)]
heapq.heapify,heapq.heappop
class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
result = []
my_dict = collections.defaultdict(int)
for num in nums:
my_dict[num] += 1
hp = [(-value, key) for key, value in my_dict.items()]
heapq.heapify(hp)
for i in range(k):
ele = heapq.heappop(hp)
result.append(ele[1])
return result
从无到有实现一个优先队列
忘记从哪抄来的了
class Solution:
def heap(self,i,h):
if(2*i<=self.n):
if(self.d[h[i]]<self.d[h[2*i]]):
a=h[i]
h[i]=h[2*i]
h[2*i]=a
self.heap(2*i,h)
if(2*i+1<=self.n):
if(self.d[h[i]]<self.d[h[2*i+1]]):
a=h[i]
h[i]=h[2*i+1]
h[2*i+1]=a
self.heap(2*i+1,h)
return
def delete(self,h):
h[1]=h[self.n]
self.n-=1
self.heap(1,h)
return
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
self.d={
}
for i in nums:
if(i not in self.d):
self.d[i]=1
else:
self.d[i]+=1
self.n=len(self.d)
h=[0]*(self.n+1)
j=1
for i in self.d:
h[j]=i
j+=1
i=int(self.n/2)
while(i>=1):
self.heap(i,h)
i-=1