密室逃脱

密室逃脱

在这里插入图片描述

题解

简单dp

其实看到这道题是很容易想到dp的谁知道我当时哪里打错了
我们先令 d p i , j dp_{i,j} dpi,j表示当第 i i i个点有 j j j个人时,前 i i i个点的最多人数。
转移方程式其实挺容易想的。

  • j < a i j< a_{i} j<ai,那么有 f i + 1 , j + b i = max ⁡ ( f i , j + b i ) f_{i+1,j+b_{i}}=\max(f_{i,j}+b_{i}) fi+1,j+bi=max(fi,j+bi) f i + 1 , k = max ⁡ ( f i , j + j ) [ k ∈ [ 0 , b i ) ] f_{i+1,k}=\max(f_{i,j}+j)[k\in [0,b_{i})] fi+1,k=max(fi,j+j)[k[0,bi)]
    对应的是该点从后面来与与后面隔绝两种情况。
  • a i ⩽ j < a i + b i a_{i}\leqslant j< a_{i}+b_{i} aij<ai+bi,那么有 f j − a i = max ⁡ ( f i , j ) f_{j-a_{i}}=\max(f_{i,j}) fjai=max(fi,j)
    对应的是后面的点从前面来的情况。
  • a i + b i ⩽ j a_i+b_i\leqslant j ai+bij,那么 f i + 1 , j = f i , j f_{i+1,j}=f_{i,j} fi+1,j=fi,j,因为这种情况下一定可以双方通行了~~,话‘说前两种好像是一方通行~~。

其实也很容易理解,最后的情况一定每一个房间有固定的人数,保证通行,它们无法到房间1,其它人全在第一个房间。
然后跑一遍dp就可以了。

时间复杂度 O ( n max ⁡ ( m , a + b ) ) O\left(n\max(m,a+b)\right) O(nmax(m,a+b))

源码

我也不知道为什么我如果直接对 d p i , j dp_{i,j} dpi,j求它从哪里转移过来会WA。

#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define MAXN 1005
#define MAXM 40005
#define lowbit(x) (x&-x)
#define reg register
typedef long long LL;
typedef unsigned long long uLL;
typedef unsigned int uint;
typedef pair<int,int> pii;
const int INF=0x7f7f7f7f;
const int mo=1e9+7;
const double PI=acos(-1.0);
template<typename _T>
_T Fabs(_T x){
    
    return x<0?-x:x;}
template<typename _T>
void read(_T &x){
    
    
	_T f=1;x=0;char s=getchar();
	while(s>'9'||s<'0'){
    
    if(s=='-')f=-1;s=getchar();}
	while('0'<=s&&s<='9'){
    
    x=(x<<3)+(x<<1)+(s^48);s=getchar();}
	x*=f;
}
int n,m,a[MAXN],b[MAXN],sum,f[MAXM],g[MAXM],maxx;bool flag;
bool check(int mid){
    
    int sum=mid;for(int i=n;i>1;i--){
    
    sum-=a[i];if(sum>=b[i])sum+=a[i];}return sum<m;}
int solve(){
    
    int l=0,r=1e8;while(l<r){
    
    int mid=l+r+1>>1;if(check(mid))l=mid;else r=mid-1;}return l;}
signed main(){
    
    
	freopen("escape.in","r",stdin);
	freopen("escape.out","w",stdout);
	read(n);read(m);int ans=m-1;
	for(int i=1;i<n;i++)read(a[i]),read(b[i]),flag|=(a[i]!=1||b[i]!=1),maxx=max(maxx,a[i]+b[i]);
	if(!flag){
    
    printf("%d\n",max((n-(m==1)+1)/2,m-1));return 0;}
	for(int i=0;i<m;i++)g[i]=i;for(int i=m;i<=maxx;i++)g[i]=-INF;
	for(int i=0;i<=maxx;i++)f[i]=-INF;
	for(int i=1;i<n;i++){
    
    
		int tmp=0;
		for(int j=0;j<=maxx;j++){
    
    
			if(j<a[i]&&j+b[i]<=maxx)f[j+b[i]]=max(f[j+b[i]],g[j]+b[i]);
			if(a[i]<=j&&j<a[i]+b[i])f[j-a[i]]=max(f[j-a[i]],g[j]);
			if(a[i]+b[i]<=j)f[j]=max(f[j],g[j]);if(j<a[i])tmp=max(tmp,g[j]);
		}
		for(int j=0;j<b[i];j++)f[j]=max(f[j],tmp+j);
		for(int j=0;j<=maxx;j++)g[j]=f[j],f[j]=-INF;
	for(int i=0;i<=maxx;i++)ans=max(ans,g[i]);printf("%d\n",ans);
	return 0;
}

谢谢!!!

猜你喜欢

转载自blog.csdn.net/Tan_tan_tann/article/details/115431251

相关文章