Java语言高级(第三部分)异常多线程 ->(个人学习记录笔记)

文章目录

第五章 异常与多线程

1. 异常

1.1 异常概念

异常,就是不正常的意思。在生活中:医生说,你的身体某个部位有异常,该部位和正常相比有点不同,该部位的功能将受影响.在程序中的意思就是:

  • 异常 :指的是程序在执行过程中,出现的非正常的情况,最终会导致JVM的非正常停止。

在Java等面向对象的编程语言中,异常本身是一个类,产生异常就是创建异常对象并抛出了一个异常对象。Java处理异常的方式是中断处理。

异常指的并不是语法错误,语法错了,编译不通过,不会产生字节码文件,根本不能运行.

1.2 异常体系

异常机制其实是帮助我们找到程序中的问题,异常的根类是java.lang.Throwable,其下有两个子类:java.lang.Errorjava.lang.Exception,平常所说的异常指java.lang.Exception

在这里插入图片描述

Throwable体系:

  • Error:严重错误Error,无法通过处理的错误,只能事先避免,好比绝症。
  • Exception:表示异常,异常产生后程序员可以通过代码的方式纠正,使程序继续运行,是必须要处理的。好比感冒、阑尾炎。

Throwable中的常用方法:

  • public void printStackTrace():打印异常的详细信息。

    包含了异常的类型,异常的原因,还包括异常出现的位置,在开发和调试阶段,都得使用printStackTrace。

  • public String getMessage():获取发生异常的原因。

    提示给用户的时候,就提示错误原因。

  • public String toString():获取异常的类型和异常描述信息(不用)。

出现异常,不要紧张,把异常的简单类名,拷贝到API中去查。

在这里插入图片描述

1.3 异常分类

我们平常说的异常就是指Exception,因为这类异常一旦出现,我们就要对代码进行更正,修复程序。

异常(Exception)的分类:根据在编译时期还是运行时期去检查异常?

  • 编译时期异常:checked异常。在编译时期,就会检查,如果没有处理异常,则编译失败。(如日期格式化异常)
  • 运行时期异常:runtime异常。在运行时期,检查异常.在编译时期,运行异常不会编译器检测(不报错)。(如数学异常)

在这里插入图片描述

/*
    java.lang.Throwable:类是 Java 语言中所有错误或异常的超类。
        Exception:编译期异常,进行编译(写代码)java程序出现的问题
            RuntimeException:运行期异常,java程序运行过程中出现的问题
            异常就相当于程序得了一个小毛病(感冒,发烧),把异常处理掉,程序可以继续执行(吃点药,继续革命工作)
        Error:错误
            错误就相当于程序得了一个无法治愈的毛病(非典,艾滋).必须修改源代码,程序才能继续执行
 */
public class Demo01Exception {
    
    
    public static void main(String[] args) /*throws ParseException*/ {
    
    
        //Exception:编译期异常,进行编译(写代码)java程序出现的问题
        /*SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");//用来格式化日期
        Date date = null;
        try {
            date = sdf.parse("1999-0909");//把字符串格式的日期,解析为Date格式的日期
        } catch (ParseException e) {
            e.printStackTrace();
        }
        System.out.println(date);*/

        //RuntimeException:运行期异常,java程序运行过程中出现的问题
        /*int[] arr = {1,2,3};
        //System.out.println(arr[0]);
        try {
            //可能会出现异常的代码
            System.out.println(arr[3]);
        }catch(Exception e){
            //异常的处理逻辑
            System.out.println(e);
        }*/

        /*
            Error:错误
            OutOfMemoryError: Java heap space
            内存溢出的错误,创建的数组太大了,超出了给JVM分配的内存
         */
        //int[] arr = new int[1024*1024*1024];
        //必须修改代码,创建的数组小一点
        int[] arr = new int[1024*1024];
        System.out.println("后续代码");
    }
}

1.4 异常的产生过程解析

先运行下面的程序,程序会产生一个数组索引越界异常ArrayIndexOfBoundsException。我们通过图解来解析下异常产生的过程。

工具类

public class ArrayTools {
    
    
    // 对给定的数组通过给定的角标获取元素。
    public static int getElement(int[] arr, int index) {
    
    
        int element = arr[index];
        return element;
    }
}

测试类

public class ExceptionDemo {
    
    
    public static void main(String[] args) {
    
    
        int[] arr = {
    
     34, 12, 67 };
        intnum = ArrayTools.getElement(arr, 4)
        System.out.println("num=" + num);
        System.out.println("over");
    }
}

上述程序执行过程图解:

在这里插入图片描述

/*
    异常的产生过程解析(分析异常的怎么产生的,如何处理异常)
 */
public class Demo02Exception {
    
    
    public static void main(String[] args) {
    
    
        //创建int类型的数组,并赋值
        int[] arr = {
    
    1,2,3};
        int e = getElement(arr,3);
        System.out.println(e);
    }

    /*
        定义一个方法,获取数组指定索引处的元素
        参数:
            int[] arr
            int index
     */
    public static int getElement(int[] arr,int index){
    
    
        int ele = arr[index];
        return ele;
    }
}

2. 异常的处理

Java异常处理的五个关键字:try、catch、finally、throw、throws

2.1 抛出异常throw

在编写程序时,我们必须要考虑程序出现问题的情况。比如,在定义方法时,方法需要接受参数。那么,当调用方法使用接受到的参数时,首先需要先对参数数据进行合法的判断,数据若不合法,就应该告诉调用者,传递合法的数据进来。这时需要使用抛出异常的方式来告诉调用者。

在java中,提供了一个throw关键字,它用来抛出一个指定的异常对象。那么,抛出一个异常具体如何操作呢?

  1. 创建一个异常对象。封装一些提示信息(信息可以自己编写)。

  2. 需要将这个异常对象告知给调用者。怎么告知呢?怎么将这个异常对象传递到调用者处呢?通过关键字throw就可以完成。throw 异常对象。

    throw用在方法内,用来抛出一个异常对象,将这个异常对象传递到调用者处,并结束当前方法的执行。

使用格式:

throw new 异常类名(参数);

例如:

throw new NullPointerException("要访问的arr数组不存在");

throw new ArrayIndexOutOfBoundsException("该索引在数组中不存在,已超出范围");

学习完抛出异常的格式后,我们通过下面程序演示下throw的使用。

public class ThrowDemo {
    
    
    public static void main(String[] args) {
    
    
        //创建一个数组 
        int[] arr = {
    
    2,4,52,2};
        //根据索引找对应的元素 
        int index = 4;
        int element = getElement(arr, index);

        System.out.println(element);
        System.out.println("over");
    }
    /*
     * 根据 索引找到数组中对应的元素
     */
    public static int getElement(int[] arr,int index){
    
     
       	//判断  索引是否越界
        if(index<0 || index>arr.length-1){
    
    
             /*
             判断条件如果满足,当执行完throw抛出异常对象后,方法已经无法继续运算。
             这时就会结束当前方法的执行,并将异常告知给调用者。这时就需要通过异常来解决。 
              */
             throw new ArrayIndexOutOfBoundsException("哥们,角标越界了~~~");
        }
        int element = arr[index];
        return element;
    }
}

注意:如果产生了问题,我们就会throw将问题描述类即异常进行抛出,也就是将问题返回给该方法的调用者。

那么对于调用者来说,该怎么处理呢?一种是进行捕获处理,另一种就是继续讲问题声明出去,使用throws声明处理。

/*
    throw关键字
    作用:
        可以使用throw关键字在指定的方法中抛出指定的异常
    使用格式:
        throw new xxxException("异常产生的原因");
    注意:
        1.throw关键字必须写在方法的内部
        2.throw关键字后边new的对象必须是Exception或者Exception的子类对象
        3.throw关键字抛出指定的异常对象,我们就必须处理这个异常对象
            throw关键字后边创建的是RuntimeException或者是 RuntimeException的子类对象,我们可以不处理,默认交给JVM处理(打印异常对象,中断程序)
            throw关键字后边创建的是编译异常(写代码的时候报错),我们就必须处理这个异常,要么throws,要么try...catch
 */
public class Demo03Throw {
    
    
    public static void main(String[] args) {
    
    
        //int[] arr = null;
        int[] arr = new int[3];
        int e = getElement(arr,3);
        System.out.println(e);
    }
    /*
        定义一个方法,获取数组指定索引处的元素
        参数:
            int[] arr
            int index
        以后(工作中)我们首先必须对方法传递过来的参数进行合法性校验
        如果参数不合法,那么我们就必须使用抛出异常的方式,告知方法的调用者,传递的参数有问题
        注意:
            NullPointerException是一个运行期异常,我们不用处理,默认交给JVM处理
            ArrayIndexOutOfBoundsException是一个运行期异常,我们不用处理,默认交给JVM处理
     */
    public static int getElement(int[] arr,int index){
    
    
        /*
            我们可以对传递过来的参数数组,进行合法性校验
            如果数组arr的值是null
            那么我们就抛出空指针异常,告知方法的调用者"传递的数组的值是null"
         */
        if(arr == null){
    
    
            throw new NullPointerException("传递的数组的值是null");
        }

        /*
            我们可以对传递过来的参数index进行合法性校验
            如果index的范围不在数组的索引范围内
            那么我们就抛出数组索引越界异常,告知方法的调用者"传递的索引超出了数组的使用范围"
         */
        if(index<0 || index>arr.length-1){
    
    
            throw new ArrayIndexOutOfBoundsException("传递的索引超出了数组的使用范围");
        }

        int ele = arr[index];
        return ele;
    }
}

2.2 Objects非空判断

还记得我们学习过一个类Objects吗,曾经提到过它由一些静态的实用方法组成,这些方法是null-save(空指针安全的)或null-tolerant(容忍空指针的),那么在它的源码中,对对象为null的值进行了抛出异常操作。

  • public static <T> T requireNonNull(T obj):查看指定引用对象不是null。

查看源码发现这里对为null的进行了抛出异常操作:

public static <T> T requireNonNull(T obj) {
    
    
    if (obj == null)
      	throw new NullPointerException();
    return obj;
}
import java.util.Objects;

/*
    Obects类中的静态方法
    public static <T> T requireNonNull(T obj):查看指定引用对象不是null。
    源码:
        public static <T> T requireNonNull(T obj) {
            if (obj == null)
                throw new NullPointerException();
            return obj;
        }
 */
public class Demo04Objects {
    
    
    public static void main(String[] args) {
    
    
        method(null);
    }

    public static void method(Object obj){
    
    
        //对传递过来的参数进行合法性判断,判断是否为null
        /*if(obj == null){
            throw new NullPointerException("传递的对象的值是null");
        }*/

        //Objects.requireNonNull(obj);
        Objects.requireNonNull(obj,"传递的对象的值是null");
    }
}

2.3 声明异常throws

声明异常:将问题标识出来,报告给调用者。如果方法内通过throw抛出了编译时异常,而没有捕获处理(稍后讲解该方式),那么必须通过throws进行声明,让调用者去处理。

关键字throws运用于方法声明之上,用于表示当前方法不处理异常,而是提醒该方法的调用者来处理异常(抛出异常).

声明异常格式:

修饰符 返回值类型 方法名(参数) throws 异常类名1,异常类名2…{   }	

声明异常的代码演示:

public class ThrowsDemo {
    
    
    public static void main(String[] args) throws FileNotFoundException {
    
    
        read("a.txt");
    }

    // 如果定义功能时有问题发生需要报告给调用者。可以通过在方法上使用throws关键字进行声明
    public static void read(String path) throws FileNotFoundException {
    
    
        if (!path.equals("a.txt")) {
    
    //如果不是 a.txt这个文件 
            // 我假设  如果不是 a.txt 认为 该文件不存在 是一个错误 也就是异常  throw
            throw new FileNotFoundException("文件不存在");
        }
    }
}

throws用于进行异常类的声明,若该方法可能有多种异常情况产生,那么在throws后面可以写多个异常类,用逗号隔开。

public class ThrowsDemo2 {
    
    
    public static void main(String[] args) throws IOException {
    
    
        read("a.txt");
    }

    public static void read(String path)throws FileNotFoundException, IOException {
    
    
        if (!path.equals("a.txt")) {
    
    //如果不是 a.txt这个文件 
            // 我假设  如果不是 a.txt 认为 该文件不存在 是一个错误 也就是异常  throw
            throw new FileNotFoundException("文件不存在");
        }
        if (!path.equals("b.txt")) {
    
    
            throw new IOException();
        }
    }
}
import java.io.FileNotFoundException;
import java.io.IOException;

/*
    throws关键字:异常处理的第一种方式,交给别人处理
    作用:
        当方法内部抛出异常对象的时候,那么我们就必须处理这个异常对象
        可以使用throws关键字处理异常对象,会把异常对象声明抛出给方法的调用者处理(自己不处理,给别人处理),最终交给JVM处理-->中断处理
    使用格式:在方法声明时使用
        修饰符 返回值类型 方法名(参数列表) throws AAAExcepiton,BBBExcepiton...{
            throw new AAAExcepiton("产生原因");
            throw new BBBExcepiton("产生原因");
            ...
        }
     注意:
        1.throws关键字必须写在方法声明处
        2.throws关键字后边声明的异常必须是Exception或者是Exception的子类
        3.方法内部如果抛出了多个异常对象,那么throws后边必须也声明多个异常
            如果抛出的多个异常对象有子父类关系,那么直接声明父类异常即可
        4.调用了一个声明抛出异常的方法,我们就必须的处理声明的异常
            要么继续使用throws声明抛出,交给方法的调用者处理,最终交给JVM
            要么try...catch自己处理异常
 */
public class Demo05Throws {
    
    
    /*
        FileNotFoundException extends IOException extends Excepiton
        如果抛出的多个异常对象有子父类关系,那么直接声明父类异常即可
     */
    //public static void main(String[] args) throws FileNotFoundException,IOException {
    
    
    //public static void main(String[] args) throws IOException {
    
    
    public static void main(String[] args) throws Exception {
    
    
        readFile("c:\\a.tx");

        System.out.println("后续代码");
    }

    /*
        定义一个方法,对传递的文件路径进行合法性判断
        如果路径不是"c:\\a.txt",那么我们就抛出文件找不到异常对象,告知方法的调用者
        注意:
            FileNotFoundException是编译异常,抛出了编译异常,就必须处理这个异常
            可以使用throws继续声明抛出FileNotFoundException这个异常对象,让方法的调用者处理
     */
    public static void readFile(String fileName) throws FileNotFoundException,IOException{
    
    
        if(!fileName.equals("c:\\a.txt")){
    
    
            throw new FileNotFoundException("传递的文件路径不是c:\\a.txt");
        }

        /*
            如果传递的路径,不是.txt结尾
            那么我们就抛出IO异常对象,告知方法的调用者,文件的后缀名不对

         */
        if(!fileName.endsWith(".txt")){
    
    
            throw new IOException("文件的后缀名不对");
        }

        System.out.println("路径没有问题,读取文件");
    }
}

2.4 捕获异常try…catch

如果异常出现的话,会立刻终止程序,所以我们得处理异常:

  1. 该方法不处理,而是声明抛出,由该方法的调用者来处理(throws)。
  2. 在方法中使用try-catch的语句块来处理异常。

try-catch的方式就是捕获异常。

  • 捕获异常:Java中对异常有针对性的语句进行捕获,可以对出现的异常进行指定方式的处理。

捕获异常语法如下:

try{
    
    
     编写可能会出现异常的代码
}catch(异常类型  e){
    
    
     处理异常的代码
     //记录日志/打印异常信息/继续抛出异常
}

**try:**该代码块中编写可能产生异常的代码。

**catch:**用来进行某种异常的捕获,实现对捕获到的异常进行处理。

注意:try和catch都不能单独使用,必须连用。

演示如下:

public class TryCatchDemo {
    
    
    public static void main(String[] args) {
    
    
        try {
    
    // 当产生异常时,必须有处理方式。要么捕获,要么声明。
            read("b.txt");
        } catch (FileNotFoundException e) {
    
    // 括号中需要定义什么呢?
          	//try中抛出的是什么异常,在括号中就定义什么异常类型
            System.out.println(e);
        }
        System.out.println("over");
    }
    /*
     *
     * 我们 当前的这个方法中 有异常  有编译期异常
     */
    public static void read(String path) throws FileNotFoundException {
    
    
        if (!path.equals("a.txt")) {
    
    //如果不是 a.txt这个文件 
            // 我假设  如果不是 a.txt 认为 该文件不存在 是一个错误 也就是异常  throw
            throw new FileNotFoundException("文件不存在");
        }
    }
}

如何获取异常信息:

Throwable类中定义了一些查看方法:

  • public String getMessage():获取异常的描述信息,原因(提示给用户的时候,就提示错误原因。

  • public String toString():获取异常的类型和异常描述信息(不用)。

  • public void printStackTrace():打印异常的跟踪栈信息并输出到控制台。

包含了异常的类型,异常的原因,还包括异常出现的位置,在开发和调试阶段,都得使用printStackTrace。

import java.io.IOException;

/*
    try...catch:异常处理的第二种方式,自己处理异常
    格式:
        try{
            可能产生异常的代码
        }catch(定义一个异常的变量,用来接收try中抛出的异常对象){
            异常的处理逻辑,异常异常对象之后,怎么处理异常对象
            一般在工作中,会把异常的信息记录到一个日志中
        }
        ...
        catch(异常类名 变量名){

        }
    注意:
        1.try中可能会抛出多个异常对象,那么就可以使用多个catch来处理这些异常对象
        2.如果try中产生了异常,那么就会执行catch中的异常处理逻辑,执行完毕catch中的处理逻辑,继续执行try...catch之后的代码
          如果try中没有产生异常,那么就不会执行catch中异常的处理逻辑,执行完try中的代码,继续执行try...catch之后的代码
 */
public class Demo01TryCatch {
    
    
    public static void main(String[] args) {
    
    
        try{
    
    
            //可能产生异常的代码
            readFile("d:\\a.tx");
            System.out.println("资源释放");
        }catch (IOException e){
    
    //try中抛出什么异常对象,catch就定义什么异常变量,用来接收这个异常对象
            //异常的处理逻辑,异常异常对象之后,怎么处理异常对象
            //System.out.println("catch - 传递的文件后缀不是.txt");

            /*
                Throwable类中定义了3个异常处理的方法
                 String getMessage() 返回此 throwable 的简短描述。
                 String toString() 返回此 throwable 的详细消息字符串。
                 void printStackTrace()  JVM打印异常对象,默认此方法,打印的异常信息是最全面的
             */
            //System.out.println(e.getMessage());//文件的后缀名不对
            //System.out.println(e.toString());//重写Object类的toString java.io.IOException: 文件的后缀名不对
            //System.out.println(e);//java.io.IOException: 文件的后缀名不对

            /*
                java.io.IOException: 文件的后缀名不对
                    at demo02.Exception.Demo01TryCatch.readFile(Demo01TryCatch.java:55)
                    at demo02.Exception.Demo01TryCatch.main(Demo01TryCatch.java:27)
             */
            e.printStackTrace();
        }
        System.out.println("后续代码");
    }

    /*
       如果传递的路径,不是.txt结尾
       那么我们就抛出IO异常对象,告知方法的调用者,文件的后缀名不对

    */
    public static void readFile(String fileName) throws IOException {
    
    

        if(!fileName.endsWith(".txt")){
    
    
            throw new IOException("文件的后缀名不对");
        }

        System.out.println("路径没有问题,读取文件");
    }
}

2.4 finally 代码块

finally:有一些特定的代码无论异常是否发生,都需要执行。另外,因为异常会引发程序跳转,导致有些语句执行不到。而finally就是解决这个问题的,在finally代码块中存放的代码都是一定会被执行的。

什么时候的代码必须最终执行?

当我们在try语句块中打开了一些物理资源(磁盘文件/网络连接/数据库连接等),我们都得在使用完之后,最终关闭打开的资源。

finally的语法:

try…catch…finally:自身需要处理异常,最终还得关闭资源。

注意:finally不能单独使用。

比如在我们之后学习的IO流中,当打开了一个关联文件的资源,最后程序不管结果如何,都需要把这个资源关闭掉。

finally代码参考如下:

public class TryCatchDemo4 {
    
    
    public static void main(String[] args) {
    
    
        try {
    
    
            read("a.txt");
        } catch (FileNotFoundException e) {
    
    
            //抓取到的是编译期异常  抛出去的是运行期 
            throw new RuntimeException(e);
        } finally {
    
    
            System.out.println("不管程序怎样,这里都将会被执行。");
        }
        System.out.println("over");
    }
    /*
     *
     * 我们 当前的这个方法中 有异常  有编译期异常
     */
    public static void read(String path) throws FileNotFoundException {
    
    
        if (!path.equals("a.txt")) {
    
    //如果不是 a.txt这个文件 
            // 我假设  如果不是 a.txt 认为 该文件不存在 是一个错误 也就是异常  throw
            throw new FileNotFoundException("文件不存在");
        }
    }
}

当只有在try或者catch中调用退出JVM的相关方法,此时finally才不会执行,否则finally永远会执行。

import java.io.IOException;

/*
    finally代码块
     格式:
        try{
            可能产生异常的代码
        }catch(定义一个异常的变量,用来接收try中抛出的异常对象){
            异常的处理逻辑,异常异常对象之后,怎么处理异常对象
            一般在工作中,会把异常的信息记录到一个日志中
        }
        ...
        catch(异常类名 变量名){

        }finally{
            无论是否出现异常都会执行
        }
     注意:
        1.finally不能单独使用,必须和try一起使用
        2.finally一般用于资源释放(资源回收),无论程序是否出现异常,最后都要资源释放(IO)
 */
public class Demo02TryCatchFinally {
    
    
    public static void main(String[] args) {
    
    
        try {
    
    
            //可能会产生异常的代码
            readFile("c:\\a.tx");
        } catch (IOException e) {
    
    
            //异常的处理逻辑
            e.printStackTrace();
        } finally {
    
    
            //无论是否出现异常,都会执行
            System.out.println("资源释放");
        }
    }

    /*
       如果传递的路径,不是.txt结尾
       那么我们就抛出IO异常对象,告知方法的调用者,文件的后缀名不对

    */
    public static void readFile(String fileName) throws IOException {
    
    

        if(!fileName.endsWith(".txt")){
    
    
            throw new IOException("文件的后缀名不对");
        }

        System.out.println("路径没有问题,读取文件");
    }
}

2.5 异常注意事项

  • 多个异常使用捕获又该如何处理呢?

    1. 多个异常分别处理。
    2. 多个异常一次捕获,多次处理。
    3. 多个异常一次捕获一次处理。

    一般我们是使用一次捕获多次处理方式,格式如下:

    try{
          
          
         编写可能会出现异常的代码
    }catch(异常类型A  e){
          
          try中出现A类型异常,就用该catch来捕获.
         处理异常的代码
         //记录日志/打印异常信息/继续抛出异常
    }catch(异常类型B  e){
          
          try中出现B类型异常,就用该catch来捕获.
         处理异常的代码
         //记录日志/打印异常信息/继续抛出异常
    }
    

    注意:这种异常处理方式,要求多个catch中的异常不能相同,并且若catch中的多个异常之间有子父类异常的关系,那么子类异常要求在上面的catch处理,父类异常在下面的catch处理。

  • 运行时异常被抛出可以不处理。即不捕获也不声明抛出。

  • 如果finally有return语句,永远返回finally中的结果,避免该情况.

  • 如果父类抛出了多个异常,子类重写父类方法时,抛出和父类相同的异常或者是父类异常的子类或者不抛出异常。

  • 父类方法没有抛出异常,子类重写父类该方法时也不可抛出异常。此时子类产生该异常,只能捕获处理,不能声明抛出

import java.util.List;

/*
    异常的注意事项
 */
public class Demo01Exception {
    
    
    public static void main(String[] args) {
    
    
        /*
            多个异常使用捕获又该如何处理呢?
            1. 多个异常分别处理。
            2. 多个异常一次捕获,多次处理。
            3. 多个异常一次捕获一次处理。
         */

        //1. 多个异常分别处理。
       /* try {
            int[] arr = {1,2,3};
            System.out.println(arr[3]);//ArrayIndexOutOfBoundsException: 3
        }catch (ArrayIndexOutOfBoundsException e){
            System.out.println(e);
        }

        try{
            List<Integer> list = List.of(1, 2, 3);
            System.out.println(list.get(3));//IndexOutOfBoundsException: Index 3 out-of-bounds for length 3
        }catch (IndexOutOfBoundsException e){
            System.out.println(e);
        }*/

        //2. 多个异常一次捕获,多次处理。
        /*try {
            int[] arr = {1,2,3};
            //System.out.println(arr[3]);//ArrayIndexOutOfBoundsException: 3
            List<Integer> list = List.of(1, 2, 3);
            System.out.println(list.get(3));//IndexOutOfBoundsException: Index 3 out-of-bounds for length 3
        }catch (ArrayIndexOutOfBoundsException e){
            System.out.println(e);
        }catch (IndexOutOfBoundsException e){
            System.out.println(e);
        }*/

        /*
            一个try多个catch注意事项:
                catch里边定义的异常变量,如果有子父类关系,那么子类的异常变量必须写在上边,否则就会报错
                ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException
         */
        /*try {
            int[] arr = {1,2,3};
            //System.out.println(arr[3]);//ArrayIndexOutOfBoundsException: 3
            List<Integer> list = List.of(1, 2, 3);
            System.out.println(list.get(3));//IndexOutOfBoundsException: Index 3 out-of-bounds for length 3
        }catch (IndexOutOfBoundsException e){
            System.out.println(e);
        }catch (ArrayIndexOutOfBoundsException e){
            System.out.println(e);
        }*/

        //3. 多个异常一次捕获一次处理。
        /*try {
            int[] arr = {1,2,3};
            //System.out.println(arr[3]);//ArrayIndexOutOfBoundsException: 3
            List<Integer> list = List.of(1, 2, 3);
            System.out.println(list.get(3));//IndexOutOfBoundsException: Index 3 out-of-bounds for length 3
        }catch (Exception e){
            System.out.println(e);
        }*/

        //运行时异常被抛出可以不处理。即不捕获也不声明抛出。
        //默认给虚拟机处理,终止程序,什么时候不抛出运行时异常了,在来继续执行程序
        int[] arr = {
    
    1,2,3};
        System.out.println(arr[3]);//ArrayIndexOutOfBoundsException: 3
        List<Integer> list = List.of(1, 2, 3);
        System.out.println(list.get(3));//IndexOutOfBoundsException: Index 3 out-of-bounds for length 3

        System.out.println("后续代码!");
    }
}
/*
    如果finally有return语句,永远返回finally中的结果,避免该情况.
 */
public class Demo02Exception {
    
    
    public static void main(String[] args) {
    
    
        int a = getA();
        System.out.println(a);
    }

    //定义一个方法,返回变量a的值
    public static int getA(){
    
    
        int a = 10;
        try{
    
    
            return a;
        }catch (Exception e){
    
    
            System.out.println(e);
        }finally {
    
    
            //一定会执行的代码
            a = 100;
            return a;
        }

    }
}

/*
    子父类的异常:
        - 如果父类抛出了多个异常,子类重写父类方法时,抛出和父类相同的异常或者是父类异常的子类或者不抛出异常。
        - 父类方法没有抛出异常,子类重写父类该方法时也不可抛出异常。此时子类产生该异常,只能捕获处理,不能声明抛出
    注意:
        父类异常时什么样,子类异常就什么样
 */
public class Fu {
    
    
    public void show01() throws NullPointerException,ClassCastException{
    
    }
    public void show02() throws IndexOutOfBoundsException{
    
    }
    public void show03() throws IndexOutOfBoundsException{
    
    }
    public void show04() throws Exception {
    
    }
}

class Zi extends Fu{
    
    
    //子类重写父类方法时,抛出和父类相同的异常
    public void show01() throws NullPointerException,ClassCastException{
    
    }
    //子类重写父类方法时,抛出父类异常的子类
    public void show02() throws ArrayIndexOutOfBoundsException{
    
    }
    //子类重写父类方法时,不抛出异常
    public void show03() {
    
    }

    /*
        父类方法没有抛出异常,子类重写父类该方法时也不可抛出异常。

     */
    //public void show04() throws Exception{}

    //此时子类产生该异常,只能捕获处理,不能声明抛出
    public void show04()  {
    
    
        try {
    
    
            throw  new Exception("编译期异常");
        } catch (Exception e) {
    
    
            e.printStackTrace();
        }
    }
}
/*
    子父类的异常:
        - 如果父类抛出了多个异常,子类重写父类方法时,抛出和父类相同的异常或者是父类异常的子类或者不抛出异常。
        - 父类方法没有抛出异常,子类重写父类该方法时也不可抛出异常。此时子类产生该异常,只能捕获处理,不能声明抛出
    注意:
        父类异常时什么样,子类异常就什么样
 */
public class Fu {
    
    
    public void show01() throws NullPointerException,ClassCastException{
    
    }
    public void show02() throws IndexOutOfBoundsException{
    
    }
    public void show03() throws IndexOutOfBoundsException{
    
    }
    public void show04() throws Exception {
    
    }
}

class Zi extends Fu{
    
    
    //子类重写父类方法时,抛出和父类相同的异常
    public void show01() throws NullPointerException,ClassCastException{
    
    }
    //子类重写父类方法时,抛出父类异常的子类
    public void show02() throws ArrayIndexOutOfBoundsException{
    
    }
    //子类重写父类方法时,不抛出异常
    public void show03() {
    
    }

    /*
        父类方法没有抛出异常,子类重写父类该方法时也不可抛出异常。

     */
    //public void show04() throws Exception{}

    //此时子类产生该异常,只能捕获处理,不能声明抛出
    public void show04()  {
    
    
        try {
    
    
            throw  new Exception("编译期异常");
        } catch (Exception e) {
    
    
            e.printStackTrace();
        }
    }
}

3. 自定义异常

3.1 概述

为什么需要自定义异常类:

我们说了Java中不同的异常类,分别表示着某一种具体的异常情况,那么在开发中总是有些异常情况是SUN没有定义好的,此时我们根据自己业务的异常情况来定义异常类。例如年龄负数问题,考试成绩负数问题等等。

在上述代码中,发现这些异常都是JDK内部定义好的,但是实际开发中也会出现很多异常,这些异常很可能在JDK中没有定义过,例如年龄负数问题,考试成绩负数问题.那么能不能自己定义异常呢?

什么是自定义异常类:

在开发中根据自己业务的异常情况来定义异常类.

自定义一个业务逻辑异常: RegisterException。一个注册异常类。

异常类如何定义:

  1. 自定义一个编译期异常: 自定义类 并继承于java.lang.Exception
  2. 自定义一个运行时期的异常类:自定义类 并继承于java.lang.RuntimeException

3.2 自定义异常的练习

要求:我们模拟注册操作,如果用户名已存在,则抛出异常并提示:亲,该用户名已经被注册。

首先定义一个登陆异常类RegisterException:

// 业务逻辑异常
public class RegisterException extends Exception {
    
    
    /**
     * 空参构造
     */
    public RegisterException() {
    
    
    }

    /**
     *
     * @param message 表示异常提示
     */
    public RegisterException(String message) {
    
    
        super(message);
    }
}

模拟登陆操作,使用数组模拟数据库中存储的数据,并提供当前注册账号是否存在方法用于判断。

public class Demo {
    
    
    // 模拟数据库中已存在账号
    private static String[] names = {
    
    "bill","hill","jill"};
   
    public static void main(String[] args) {
    
         
        //调用方法
        try{
    
    
              // 可能出现异常的代码
            checkUsername("nill");
            System.out.println("注册成功");//如果没有异常就是注册成功
        }catch(RegisterException e){
    
    
            //处理异常
            e.printStackTrace();
        }
    }

    //判断当前注册账号是否存在
    //因为是编译期异常,又想调用者去处理 所以声明该异常
    public static boolean checkUsername(String uname) throws LoginException{
    
    
        for (String name : names) {
    
    
            if(name.equals(uname)){
    
    //如果名字在这里面 就抛出登陆异常
                throw new RegisterException("亲"+name+"已经被注册了!");
            }
        }
        return true;
    }
}
import java.util.Scanner;

/*
    要求:我们模拟注册操作,如果用户名已存在,则抛出异常并提示:亲,该用户名已经被注册。

    分析:
        1.使用数组保存已经注册过的用户名(数据库)
        2.使用Scanner获取用户输入的注册的用户名(前端,页面)
        3.定义一个方法,对用户输入的中注册的用户名进行判断
            遍历存储已经注册过用户名的数组,获取每一个用户名
            使用获取到的用户名和用户输入的用户名比较
                true:
                    用户名已经存在,抛出RegisterException异常,告知用户"亲,该用户名已经被注册";
                false:
                    继续遍历比较
            如果循环结束了,还没有找到重复的用户名,提示用户"恭喜您,注册成功!";
 */
public class Demo01RegisterException {
    
    
    // 1.使用数组保存已经注册过的用户名(数据库)
    static String[] usernames = {
    
    "张三","李四","王五"};

    public static void main(String[] args) /*throws RegisterException*/ {
    
    
        //2.使用Scanner获取用户输入的注册的用户名(前端,页面)
        Scanner sc = new Scanner(System.in);
        System.out.println("请输入您要注册的用户名:");
        String username = sc.next();
        checkUsername(username);

    }

    //3.定义一个方法,对用户输入的中注册的用户名进行判断
    public static void checkUsername(String username) /*throws RegisterException*/ {
    
    
        //遍历存储已经注册过用户名的数组,获取每一个用户名
        for (String name : usernames) {
    
    
            //使用获取到的用户名和用户输入的用户名比较
            if(name.equals(username)){
    
    
                //true:用户名已经存在,抛出RegisterException异常,告知用户"亲,该用户名已经被注册";
                try {
    
    
                    throw new RegisterException("亲,该用户名已经被注册");
                } catch (RegisterException e) {
    
    
                    e.printStackTrace();
                    return; //结束方法
                }
            }
        }

        //如果循环结束了,还没有找到重复的用户名,提示用户"恭喜您,注册成功!";
        System.out.println("恭喜您,注册成功!");
    }
}
import java.util.Scanner;

/*
    要求:我们模拟注册操作,如果用户名已存在,则抛出异常并提示:亲,该用户名已经被注册。

    分析:
        1.使用数组保存已经注册过的用户名(数据库)
        2.使用Scanner获取用户输入的注册的用户名(前端,页面)
        3.定义一个方法,对用户输入的中注册的用户名进行判断
            遍历存储已经注册过用户名的数组,获取每一个用户名
            使用获取到的用户名和用户输入的用户名比较
                true:
                    用户名已经存在,抛出RegisterException异常,告知用户"亲,该用户名已经被注册";
                false:
                    继续遍历比较
            如果循环结束了,还没有找到重复的用户名,提示用户"恭喜您,注册成功!";
 */
public class Demo02RegisterException {
    
    
    // 1.使用数组保存已经注册过的用户名(数据库)
    static String[] usernames = {
    
    "张三","李四","王五"};

    public static void main(String[] args) {
    
    
        //2.使用Scanner获取用户输入的注册的用户名(前端,页面)
        Scanner sc = new Scanner(System.in);
        System.out.println("请输入您要注册的用户名:");
        String username = sc.next();
        checkUsername(username);

    }

    //3.定义一个方法,对用户输入的中注册的用户名进行判断
    public static void checkUsername(String username)  {
    
    
        //遍历存储已经注册过用户名的数组,获取每一个用户名
        for (String name : usernames) {
    
    
            //使用获取到的用户名和用户输入的用户名比较
            if(name.equals(username)){
    
    
                //true:用户名已经存在,抛出RegisterException异常,告知用户"亲,该用户名已经被注册";
                throw new RegisterException("亲,该用户名已经被注册");//抛出运行期异常,无需处理,交给JVM处理,中断处理
            }
        }

        //如果循环结束了,还没有找到重复的用户名,提示用户"恭喜您,注册成功!";
        System.out.println("恭喜您,注册成功!");
    }
}
/*
    自定义异常类:
        java提供的异常类,不够我们使用,需要自己定义一些异常类
    格式:
        public class XXXExcepiton extends Exception | RuntimeException{
            添加一个空参数的构造方法
            添加一个带异常信息的构造方法
        }
     注意:
        1.自定义异常类一般都是以Exception结尾,说明该类是一个异常类
        2.自定义异常类,必须的继承Exception或者RuntimeException
            继承Exception:那么自定义的异常类就是一个编译期异常,如果方法内部抛出了编译期异常,就必须处理这个异常,要么throws,要么try...catch
            继承RuntimeException:那么自定义的异常类就是一个运行期异常,无需处理,交给虚拟机处理(中断处理)
 */
public class RegisterException extends /*Exception*/ RuntimeException{
    
    
    //添加一个空参数的构造方法
    public RegisterException(){
    
    
        super();
    }

    /*
        添加一个带异常信息的构造方法
        查看源码发现,所有的异常类都会有一个带异常信息的构造方法,方法内部会调用父类带异常信息的构造方法,让父类来处理这个异常信息
     */
    public RegisterException(String message){
    
    
        super(message);
    }
}

4. 多线程

我们在之前,学习的程序在没有跳转语句的前提下,都是由上至下依次执行,那现在想要设计一个程序,边打游戏边听歌,怎么设计?

要解决上述问题,咱们得使用多进程或者多线程来解决.

4.1 并发与并行

  • 并发:指两个或多个事件在同一个时间段内发生.(交替执行)
  • 并行:指两个或多个事件在同一时刻发生(同时发生)。

在这里插入图片描述
在这里插入图片描述

在操作系统中,安装了多个程序,并发指的是在一段时间内宏观上有多个程序同时运行,这在单 CPU 系统中,每一时刻只能有一道程序执行,即微观上这些程序是分时的交替运行,只不过是给人的感觉是同时运行,那是因为分时交替运行的时间是非常短的。

而在多个 CPU 系统中,则这些可以并发执行的程序便可以分配到多个处理器上(CPU),实现多任务并行执行,即利用每个处理器来处理一个可以并发执行的程序,这样多个程序便可以同时执行。目前电脑市场上说的多核 CPU,便是多核处理器,核 越多,并行处理的程序越多,能大大的提高电脑运行的效率。

注意:单核处理器的计算机肯定是不能并行的处理多个任务的,只能是多个任务在单个CPU上并发运行。同理,线程也是一样的,从宏观角度上理解线程是并行运行的,但是从微观角度上分析却是串行运行的,即一个线程一个线程的去运行,当系统只有一个CPU时,线程会以某种顺序执行多个线程,我们把这种情况称之为线程调度。

4.2 线程与进程

  • 进程:是指一个内存中运行的应用程序,每个进程都有一个独立的内存空间,一个应用程序可以同时运行多个进程;进程也是程序的一次执行过程,是系统运行程序的基本单位;系统运行一个程序即是一个进程从创建、运行到消亡的过程。

  • 线程:线程是进程中的一个执行单元,负责当前进程中程序的执行,一个进程中至少有一个线程。一个进程中是可以有多个线程的,这个应用程序也可以称之为多线程程序。

    简而言之:一个程序运行后至少有一个进程,一个进程中可以包含多个线程

我们可以再电脑底部任务栏,右键----->打开任务管理器,可以查看当前任务的进程:

进程

在这里插入图片描述

线程

在这里插入图片描述
在这里插入图片描述

线程调度:

  • 分时调度

    所有线程轮流使用 CPU 的使用权,平均分配每个线程占用 CPU 的时间。

  • 抢占式调度

    优先让优先级高的线程使用 CPU,如果线程的优先级相同,那么会随机选择一个(线程随机性),Java使用的为抢占式调度。

    • 设置线程的优先级

在这里插入图片描述

  • 抢占式调度详解
大部分操作系统都支持多进程并发运行,现在的操作系统几乎都支持同时运行多个程序。比如:现在我们上课一边使用编辑器,一边使用录屏软件,同时还开着画图板,dos窗口等软件。此时,这些程序是在同时运行,”感觉这些软件好像在同一时刻运行着“。

实际上,CPU(中央处理器)使用抢占式调度模式在多个线程间进行着高速的切换。对于CPU的一个核而言,某个时刻,只能执行一个线程,而 CPU的在多个线程间切换速度相对我们的感觉要快,看上去就是在同一时刻运行。
其实,多线程程序并不能提高程序的运行速度,但能够提高程序运行效率,让CPU的使用率更高。

在这里插入图片描述

4.3 创建线程类

Java使用java.lang.Thread类代表线程,所有的线程对象都必须是Thread类或其子类的实例。每个线程的作用是完成一定的任务,实际上就是执行一段程序流即一段顺序执行的代码。Java使用线程执行体来代表这段程序流。Java中通过继承Thread类来创建启动多线程的步骤如下:

  1. 定义Thread类的子类,并重写该类的run()方法,该run()方法的方法体就代表了线程需要完成的任务,因此把run()方法称为线程执行体。
  2. 创建Thread子类的实例,即创建了线程对象
  3. 调用线程对象的start()方法来启动该线程

代码如下:

测试类:

public class Demo01 {
    
    
	public static void main(String[] args) {
    
    
		//创建自定义线程对象
		MyThread mt = new MyThread("新的线程!");
		//开启新线程
		mt.start();
		//在主方法中执行for循环
		for (int i = 0; i < 10; i++) {
    
    
			System.out.println("main线程!"+i);
		}
	}
}

自定义线程类:

public class MyThread extends Thread {
    
    
	//定义指定线程名称的构造方法
	public MyThread(String name) {
    
    
		//调用父类的String参数的构造方法,指定线程的名称
		super(name);
	}
	/**
	 * 重写run方法,完成该线程执行的逻辑
	 */
	@Override
	public void run() {
    
    
		for (int i = 0; i < 10; i++) {
    
    
			System.out.println(getName()+":正在执行!"+i);
		}
	}
}
/*
    主线程:执行主(main)方法的线程

    单线程程序:java程序中只有一个线程
    执行从main方法开始,从上到下依次执行

    JVM执行main方法,main方法会进入到栈内存
    JVM会找操作系统开辟一条main方法通向cpu的执行路径
    cpu就可以通过这个路径来执行main方法
    而这个路径有一个名字,叫main(主)线程
 */
public class Demo01MainThread {
    
    
    public static void main(String[] args) {
    
    
        Person p1 = new Person("小强");
        p1.run();
        System.out.println(0/0);//ArithmeticException: / by zero
        Person p2 = new Person("旺财");
        p2.run();
    }
}
public class Person {
    
    
    private String name;

    public void run(){
    
    
        //定义循环,执行20次
        for(int i=0; i<20; i++){
    
    
            System.out.println(name+"-->"+i);
        }
    }

    public Person() {
    
    
    }

    public Person(String name) {
    
    
        this.name = name;
    }

    public String getName() {
    
    
        return name;
    }

    public void setName(String name) {
    
    
        this.name = name;
    }
}

5. 线程

5.1 多线程原理

昨天的时候我们已经写过一版多线程的代码,很多同学对原理不是很清楚,那么我们今天先画个多线程执行时序图 来体现一下多线程程序的执行流程。

代码如下:

自定义线程类:

public class MyThread extends Thread{
    
     /*

*	利用继承中的特点

*	将线程名称传递 进行设置

*/

public MyThread(String name){
    
     
	super(name);
}

/*
*	重写run方法
*	定义线程要执行的代码
*/

public void run(){
    
    

	for (int i = 0; i < 20; i++) {
    
     
		//getName()方法 来自父亲 
		System.out.println(getName()+i);
		}

	}

}

测试类:

public class Demo {
    
    
    public static void main(String[] args) {
    
    
    	System.out.println("这里是main线程");  
     	MyThread mt = new MyThread("小强");            
     	mt.start();//开启了一个新的线程    
     	for (int i = 0; i < 20; i++) {
    
        
			System.out.println("旺财:"+i);            
		}        
	}    
}  

流程图:
在这里插入图片描述
程序启动运行 main时候,java虚拟机启动一个进程,主线程main在main()调用时候被创建。随着调用mt的对象的
start方法,另外一个新的线程也启动了,这样,整个应用就在多线程下运行。

通过这张图我们可以很清晰的看到多线程的执行流程,那么为什么可以完成并发执行呢?我们再来讲一讲原理。

多线程执行时,到底在内存中是如何运行的呢?以上个程序为例,进行图解说明:

多线程执行时,在栈内存中,其实每一个执行线程都有一片自己所属的栈内存空间。进行方法的压栈和弹栈。
在这里插入图片描述
当执行线程的任务结束了,线程自动在栈内存中释放了。但是当所有的执行线程都结束了,那么进程就结束了。

在这里插入图片描述

//1.创建一个Thread类的子类
public class MyThread extends Thread{
    
    
    //2.在Thread类的子类中重写Thread类中的run方法,设置线程任务(开启线程要做什么?)
    @Override
    public void run() {
    
    
        for (int i = 0; i <20 ; i++) {
    
    
            System.out.println("run:"+i);
        }
    }
}
/*
    创建多线程程序的第一种方式:创建Thread类的子类
    java.lang.Thread类:是描述线程的类,我们想要实现多线程程序,就必须继承Thread类

    实现步骤:
        1.创建一个Thread类的子类
        2.在Thread类的子类中重写Thread类中的run方法,设置线程任务(开启线程要做什么?)
        3.创建Thread类的子类对象
        4.调用Thread类中的方法start方法,开启新的线程,执行run方法
             void start() 使该线程开始执行;Java 虚拟机调用该线程的 run 方法。
             结果是两个线程并发地运行;当前线程(main线程)和另一个线程(创建的新线程,执行其 run 方法)。
             多次启动一个线程是非法的。特别是当线程已经结束执行后,不能再重新启动。
    java程序属于抢占式调度,那个线程的优先级高,那个线程优先执行;同一个优先级,随机选择一个执行
 */
public class Demo01Thread {
    
    
    public static void main(String[] args) {
    
    
        //3.创建Thread类的子类对象
        MyThread mt = new MyThread();
        //4.调用Thread类中的方法start方法,开启新的线程,执行run方法
        mt.start();

        for (int i = 0; i <20 ; i++) {
    
    
            System.out.println("main:"+i);
        }
    }
}

在这里插入图片描述

5.2 Thread 类

在上一天内容中我们已经可以完成最基本的线程开启,那么在我们完成操作过程中用到了 java.lang.Thread 类,
API中该类中定义了有关线程的一些方法,具体如下:

构造方法:

  • public Thread() :分配一个新的线程对象。
  • public Thread(String name) :分配一个指定名字的新的线程对象。
  • public Thread(Runnable target) :分配一个带有指定目标新的线程对象。
  • public Thread(Runnable target,String name) :分配一个带有指定目标新的线程对象并指定名字。

常用方法:

  • public String getName() :获取当前线程名称。
  • public void start() :导致此线程开始执行; Java虚拟机调用此线程的run方法。
  • public void run() :此线程要执行的任务在此处定义代码。
  • public static void sleep(long millis) :使当前正在执行的线程以指定的毫秒数暂停(暂时停止执行)。
  • public static Thread currentThread() :返回对当前正在执行的线程对象的引用。

翻阅API后得知创建线程的方式总共有两种,一种是继承Thread类方式,一种是实现Runnable接口方式

getName

/*
    获取线程的名称:
        1.使用Thread类中的方法getName()
            String getName() 返回该线程的名称。
        2.可以先获取到当前正在执行的线程,使用线程中的方法getName()获取线程的名称
            static Thread currentThread() 返回对当前正在执行的线程对象的引用。
 */
// 定义一个Thread类的子类
public class MyThread extends Thread{
    
    
    //重写Thread类中的run方法,设置线程任务
    @Override
    public void run() {
    
    
        //获取线程名称
        //String name = getName();
        //System.out.println(name);

        //Thread t = Thread.currentThread();
        //System.out.println(t);//Thread[Thread-0,5,main]
        //String name = t.getName();
        //System.out.println(name);

        //链式编程
        System.out.println(Thread.currentThread().getName());
    }
}
/*
    线程的名称:
        主线程: main
        新线程: Thread-0,Thread-1,Thread-2
 */
public class Demo01GetThreadName {
    
    
    public static void main(String[] args) {
    
    
        //创建Thread类的子类对象
        MyThread mt = new MyThread();
        //调用start方法,开启新线程,执行run方法
        mt.start();

        new MyThread().start();
        new MyThread().start();

        //链式编程
        System.out.println(Thread.currentThread().getName());
    }
}

setName

/*
    设置线程的名称:(了解)
        1.使用Thread类中的方法setName(名字)
            void setName(String name) 改变线程名称,使之与参数 name 相同。
        2.创建一个带参数的构造方法,参数传递线程的名称;调用父类的带参构造方法,把线程名称传递给父类,让父类(Thread)给子线程起一个名字
            Thread(String name) 分配新的 Thread 对象。
 */
public class MyThread extends Thread{
    
    

    public MyThread(){
    
    }

    public MyThread(String name){
    
    
        super(name);//把线程名称传递给父类,让父类(Thread)给子线程起一个名字
    }

    @Override
    public void run() {
    
    
        //获取线程的名称
        System.out.println(Thread.currentThread().getName());
    }
}
public class Demo01SetThreadName {
    
    
    public static void main(String[] args) {
    
    
        //开启多线程
        MyThread mt = new MyThread();
        mt.setName("小强");
        mt.start();

        //开启多线程
        new MyThread("旺财").start();
    }
}

sleep

/*
    public static void sleep(long millis):使当前正在执行的线程以指定的毫秒数暂停(暂时停止执行)。
    毫秒数结束之后,线程继续执行
 */
public class Demo01Sleep {
    
    
    public static void main(String[] args) {
    
    
        //模拟秒表
        for (int i = 1; i <=60 ; i++) {
    
    
            System.out.println(i);

            //使用Thread类的sleep方法让程序睡眠1秒钟
            try {
    
    
                Thread.sleep(1000);
            } catch (InterruptedException e) {
    
    
                e.printStackTrace();
            }
        }
    }
}

5.3 创建线程方式二

采用 java.lang.Runnable 也是非常常见的一种,我们只需要重写run方法即可。

步骤如下:

  1. 定义Runnable接口的实现类,并重写该接口的run()方法,该run()方法的方法体同样是该线程的线程执行体。
  2. 创建Runnable实现类的实例,并以此实例作为Thread的target来创建Thread对象,该Thread对象才是真正
    的线程对象。
  3. 调用线程对象的start()方法来启动线程。

代码如下:

public class MyRunnable implements Runnable{
    
    
	@Override    
	public void run() {
    
        
		for (int i = 0; i < 20; i++) {
    
            
			System.out.println(Thread.currentThread().getName()+" "+i);            
		}        
	}    
}
public class Demo {
    
    
    public static void main(String[] args) {
    
    
        //创建自定义类对象  线程任务对象
        MyRunnable mr = new MyRunnable();
        //创建线程对象
        Thread t = new Thread(mr, "小强");
        t.start();
        for (int i = 0; i < 20; i++) {
    
    
            System.out.println("旺财 " + i);
        }
    }
}

通过实现 Runnable接口,使得该类有了多线程类的特征。run()方法是多线程程序的一个执行目标。所有的多线程代码都在run方法里面。Thread类实际上也是实现了Runnable接口的类。

在启动的多线程的时候,需要先通过Thread类的构造方法Thread(Runnable target) 构造出对象,然后调用Thread
对象的start()方法来运行多线程代码。

实际上所有的多线程代码都是通过运行Thread的start()方法来运行的。因此,不管是继承Thread类还是实现Runnable接口来实现多线程,最终还是通过Thread的对象的API来控制线程的,熟悉Thread类的API是进行多线程编程的基础。

tips:Runnable对象仅仅作为Thread对象的target,Runnable实现类里包含的run()方法仅作为线程执行体。而实际的线程对象依然是Thread实例,只是该Thread线程负责执行其target的run()方法。

//1.创建一个Runnable接口的实现类
public class RunnableImpl implements Runnable{
    
    
    //2.在实现类中重写Runnable接口的run方法,设置线程任务
    @Override
    public void run() {
    
    
        for (int i = 0; i <20 ; i++) {
    
    
            System.out.println(Thread.currentThread().getName()+"-->"+i);
        }
    }
}
//1.创建一个Runnable接口的实现类
public class RunnableImpl2 implements Runnable{
    
    
    //2.在实现类中重写Runnable接口的run方法,设置线程任务
    @Override
    public void run() {
    
    
        for (int i = 0; i <20 ; i++) {
    
    
            System.out.println("HelloWorld"+i);
        }
    }
}
/*
    创建多线程程序的第二种方式:实现Runnable接口
    java.lang.Runnable
        Runnable 接口应该由那些打算通过某一线程执行其实例的类来实现。类必须定义一个称为 run 的无参数方法。
    java.lang.Thread类的构造方法
        Thread(Runnable target) 分配新的 Thread 对象。
        Thread(Runnable target, String name) 分配新的 Thread 对象。

    实现步骤:
        1.创建一个Runnable接口的实现类
        2.在实现类中重写Runnable接口的run方法,设置线程任务
        3.创建一个Runnable接口的实现类对象
        4.创建Thread类对象,构造方法中传递Runnable接口的实现类对象
        5.调用Thread类中的start方法,开启新的线程执行run方法

    实现Runnable接口创建多线程程序的好处:
        1.避免了单继承的局限性
            一个类只能继承一个类(一个人只能有一个亲爹),类继承了Thread类就不能继承其他的类
            实现了Runnable接口,还可以继承其他的类,实现其他的接口
        2.增强了程序的扩展性,降低了程序的耦合性(解耦)
            实现Runnable接口的方式,把设置线程任务和开启新线程进行了分离(解耦)
            实现类中,重写了run方法:用来设置线程任务
            创建Thread类对象,调用start方法:用来开启新线程
 */
public class Demo01Runnable {
    
    
    public static void main(String[] args) {
    
    
        //3.创建一个Runnable接口的实现类对象
        RunnableImpl run = new RunnableImpl();
        //4.创建Thread类对象,构造方法中传递Runnable接口的实现类对象
        //Thread t = new Thread(run);//打印线程名称
        Thread t = new Thread(new RunnableImpl2());//打印HelloWorld
        //5.调用Thread类中的start方法,开启新的线程执行run方法
        t.start();

        for (int i = 0; i <20 ; i++) {
    
    
            System.out.println(Thread.currentThread().getName()+"-->"+i);
        }
    }
}

5.4 Thread 和Runnable的区别

如果一个类继承Thread,则不适合资源共享。但是如果实现了Runable接口的话,则很容易的实现资源共享。

总结:

实现Runnable接口比继承Thread类所具有的优势:

  1. 适合多个相同的程序代码的线程去共享同一个资源。
  2. 可以避免java中的单继承的局限性。
  3. 增加程序的健壮性,实现解耦操作,代码可以被多个线程共享,代码和线程独立。
  4. 线程池只能放入实现Runable或Callable类线程,不能直接放入继承Thread的类。

扩充:在java中,每次程序运行至少启动2个线程。一个是main线程,一个是垃圾收集线程。因为每当使用 java命令执行一个类的时候,实际上都会启动一个JVM,每一个JVM其实在就是在操作系统中启动了一个进程。

5.5 匿名内部类方式实现线程的创建

使用线程的内匿名内部类方式,可以方便的实现每个线程执行不同的线程任务操作。
使用匿名内部类的方式实现Runnable接口,重新Runnable接口中的run方法:

 public class NoNameInnerClassThread {
    
    
   public static void main(String[] args) {
    
                
// new Runnable(){      
// public void run(){          
// for (int i = 0; i < 20; i++) {              
// System.out.println("张宇:"+i);                  
// }              
// }            
//    }; //‐‐‐这个整体  相当于new MyRunnable()    
        Runnable r = new Runnable(){
    
    
            public void run(){
    
    
                for (int i = 0; i < 20; i++) {
    
    
                   System.out.println("张宇:"+i);  
                }
            } 
        };
        new Thread(r).start();
        for (int i = 0; i < 20; i++) {
    
    
           System.out.println("费玉清:"+i);  
        }
   } 
}
/*
    匿名内部类方式实现线程的创建

    匿名:没有名字
    内部类:写在其他类内部的类

    匿名内部类作用:简化代码
        把子类继承父类,重写父类的方法,创建子类对象合一步完成
        把实现类实现类接口,重写接口中的方法,创建实现类对象合成一步完成
    匿名内部类的最终产物:子类/实现类对象,而这个类没有名字

    格式:
        new 父类/接口(){
            重复父类/接口中的方法
        };
 */
public class Demo01InnerClassThread {
    
    
    public static void main(String[] args) {
    
    
        //线程的父类是Thread
        // new MyThread().start();
        new Thread(){
    
    
            //重写run方法,设置线程任务
            @Override
            public void run() {
    
    
                for (int i = 0; i <20 ; i++) {
    
    
                    System.out.println(Thread.currentThread().getName()+"-->"+"ren");
                }
            }
        }.start();

        //线程的接口Runnable
        //Runnable r = new RunnableImpl();//多态
        Runnable r = new Runnable(){
    
    
            //重写run方法,设置线程任务
            @Override
            public void run() {
    
    
                for (int i = 0; i <20 ; i++) {
    
    
                    System.out.println(Thread.currentThread().getName()+"-->"+"min");
                }
            }
        };
        new Thread(r).start();

        //简化接口的方式
        new Thread(new Runnable(){
    
    
            //重写run方法,设置线程任务
            @Override
            public void run() {
    
    
                for (int i = 0; i <20 ; i++) {
    
    
                    System.out.println(Thread.currentThread().getName()+"-->"+"xingfu");
                }
            }
        }).start();
    }
}

6. 线程安全

6.1 线程安全

如果有多个线程在同时运行,而这些线程可能会同时运行这段代码。程序每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。

我们通过一个案例,演示线程的安全问题:

电影院要卖票,我们模拟电影院的卖票过程。假设要播放的电影是 “葫芦娃大战奥特曼”,本次电影的座位共100个(本场电影只能卖100张票)。

我们来模拟电影院的售票窗口,实现多个窗口同时卖 “葫芦娃大战奥特曼”这场电影票(多个窗口一起卖这100张票)

需要窗口,采用线程对象来模拟;需要票,Runnable接口子类来模拟

在这里插入图片描述

模拟票:

public class Ticket implements Runnable {
    
    
    private int ticket = 100;
    /*
     * 执行卖票操作
     */
    @Override
    public void run() {
    
    
        //每个窗口卖票的操作
        //窗口 永远开启
        while (true) {
    
    
            if (ticket > 0) {
    
    //有票 可以卖
                //出票操作
                //使用sleep模拟一下出票时间
                try {
    
    
                    Thread.sleep(100);
                } catch (InterruptedException e) {
    
    
                    // TODO Auto‐generated catch block
                    e.printStackTrace();
                }
                //获取当前线程对象的名字
                String name = Thread.currentThread().getName();
                System.out.println(name + "正在卖:" + ticket‐‐);
            }
        }
    }
}

测试类:

public class Demo {
    
    
	public static void main(String[] args) {
    
        
		//创建线程任务对象        
		Ticket ticket = new Ticket();        
		//创建三个窗口对象        
		Thread t1 = new Thread(ticket, "窗口1");        
		Thread t2 = new Thread(ticket, "窗口2");        
		Thread t3 = new Thread(ticket, "窗口3");        
       
		//同时卖票        
		t1.start();        
		t2.start();        
		t3.start();        
	}    
}

结果中有一部分这样现象:
在这里插入图片描述
发现程序出现了两个问题:

  1. 相同的票数,比如5这张票被卖了两回。
  2. 不存在的票,比如0票与-1票,是不存在的。

这种问题,几个窗口(线程)票数不同步了,这种问题称为线程不安全。
在这里插入图片描述

线程安全问题都是由全局变量及静态变量引起的。若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作,一般都需要考虑线程同步,否则的话就可能影响线程安全。

/*
    实现卖票案例
 */
public class RunnableImpl implements Runnable{
    
    
    //定义一个多个线程共享的票源
    private  int ticket = 100;


    //设置线程任务:卖票
    @Override
    public void run() {
    
    
        //使用死循环,让卖票操作重复执行
        while(true){
    
    
            //先判断票是否存在
            if(ticket>0){
    
    
                //提高安全问题出现的概率,让程序睡眠
                try {
    
    
                    Thread.sleep(10);
                } catch (InterruptedException e) {
    
    
                    e.printStackTrace();
                }

                //票存在,卖票 ticket--
                System.out.println(Thread.currentThread().getName()+"-->正在卖第"+ticket+"张票");
                ticket--;
            }
        }
    }
}
/*
    模拟卖票案例
    创建3个线程,同时开启,对共享的票进行出售
 */
public class Demo01Ticket {
    
    
    public static void main(String[] args) {
    
    
        //创建Runnable接口的实现类对象
        RunnableImpl run = new RunnableImpl();
        //创建Thread类对象,构造方法中传递Runnable接口的实现类对象
        Thread t0 = new Thread(run);
        Thread t1 = new Thread(run);
        Thread t2 = new Thread(run);
        //调用start方法开启多线程
        t0.start();
        t1.start();
        t2.start();
    }
}

6.2 线程同步

当我们使用多个线程访问同一资源的时候,且多个线程中对资源有写的操作,就容易出现线程安全问题。

要解决上述多线程并发访问一个资源的安全性问题:也就是解决重复票与不存在票问题,Java中提供了同步机制(synchronized)来解决。

根据案例简述:

窗口1线程进入操作的时候,窗口2和窗口3线程只能在外等着,窗口1操作结束,窗口1和窗口2和窗口3才有机会进入代码去执行。也就是说在某个线程修改共享资源的时候,其他线程不能修改该资源,等待修改完毕同步之后,才能去抢夺CPU资源,完成对应的操作,保证了数据的同步性,解决了线程不安全的现象。

为了保证每个线程都能正常执行原子操作,Java引入了线程同步机制。

那么怎么去使用呢?有三种方式完成同步操作:

  1. 同步代码块。
  2. 同步方法。
  3. 锁机制。

6.3 同步代码块

  • 同步代码块synchronized 关键字可以用于方法中的某个区块中,表示只对这个区块的资源实行互斥访问。

格式:

synchronized(同步锁){
    
    
     需要同步操作的代码
}

同步锁:

对象的同步锁只是一个概念,可以想象为在对象上标记了一个锁.

  1. 锁对象 可以是任意类型。
  2. 多个线程对象 要使用同一把锁。

注意:在任何时候,最多允许一个线程拥有同步锁,谁拿到锁就进入代码块,其他的线程只能在外等着(BLOCKED)。

使用同步代码块解决代码:

public class Ticket implements Runnable{
    
    
	private int ticket = 100;    
   
	Object lock = new Object();    
	/*    
	 * 执行卖票操作    
	 */    
	@Override    
	public void run() {
    
        
		//每个窗口卖票的操作         
		//窗口 永远开启         
		while(true){
    
            
			synchronized (lock) {
    
                
				if(ticket>0){
    
    //有票 可以卖                
					//出票操作                    
					//使用sleep模拟一下出票时间                     
					try {
    
                        
					Thread.sleep(50);                        
					} catch (InterruptedException e) {
    
                        
					// TODO Auto‐generated catch block                        
					e.printStackTrace();                        
					}                    
					//获取当前线程对象的名字                     
					String name = Thread.currentThread().getName();                    
					System.out.println(name+"正在卖:"+ticket‐‐);                    
					}                
				} 
			}        
		}    
}

当使用了同步代码块后,上述的线程的安全问题,解决了。

在这里插入图片描述


/*
    卖票案例出现了线程安全问题
    卖出了不存在的票和重复的票

    解决线程安全问题的一种方案:使用同步代码块
    格式:
        synchronized(锁对象){
            可能会出现线程安全问题的代码(访问了共享数据的代码)
        }

    注意:
        1.通过代码块中的锁对象,可以使用任意的对象
        2.但是必须保证多个线程使用的锁对象是同一个
        3.锁对象作用:
            把同步代码块锁住,只让一个线程在同步代码块中执行
 */
public class RunnableImpl implements Runnable{
    
    
    //定义一个多个线程共享的票源
    private  int ticket = 100;

    //创建一个锁对象
    Object obj = new Object();

    //设置线程任务:卖票
    @Override
    public void run() {
    
    
        //使用死循环,让卖票操作重复执行
        while(true){
    
    
           //同步代码块
            synchronized (obj){
    
    
                //先判断票是否存在
                if(ticket>0){
    
    
                    //提高安全问题出现的概率,让程序睡眠
                    try {
    
    
                        Thread.sleep(10);
                    } catch (InterruptedException e) {
    
    
                        e.printStackTrace();
                    }

                    //票存在,卖票 ticket--
                    System.out.println(Thread.currentThread().getName()+"-->正在卖第"+ticket+"张票");
                    ticket--;
                }
            }
        }
    }
}
/*
    模拟卖票案例
    创建3个线程,同时开启,对共享的票进行出售
 */
public class Demo01Ticket {
    
    
    public static void main(String[] args) {
    
    
        //创建Runnable接口的实现类对象
        RunnableImpl run = new RunnableImpl();
        //创建Thread类对象,构造方法中传递Runnable接口的实现类对象
        Thread t0 = new Thread(run);
        Thread t1 = new Thread(run);
        Thread t2 = new Thread(run);
        //调用start方法开启多线程
        t0.start();
        t1.start();
        t2.start();
    }
}

6.4 同步方法

  • 同步方法 :使用synchronized修饰的方法,就叫做同步方法,保证A线程执行该方法的时候,其他线程只能在方法外等着。

格式:

public synchronized void method(){
    
    
   可能会产生线程安全问题的代码 
}

同步锁是谁?

对于非static方法,同步锁就是this。

对于static方法,我们使用当前方法所在类的字节码对象(类名.class)。

使用同步方法代码如下:

public class Ticket implements Runnable {
    
    
    private int ticket = 100;

    /*
     * 执行卖票操作
     */
    @Override
    public void run() {
    
    
//每个窗口卖票的操作         
//窗口 永远开启         
        while (true) {
    
    
            sellTicket();
        }
    }

    /*
     * 锁对象 是 谁调用这个方法 就是谁
     *   隐含 锁对象 就是  this
     *
     */
    public synchronized void sellTicket() {
    
    
        if (ticket > 0) {
    
    //有票 可以卖  
            //出票操作
            //使用sleep模拟一下出票时间
            try {
    
    
                Thread.sleep(100);
            } catch (InterruptedException e) {
    
    
                // TODO Auto‐generated catch block  
                e.printStackTrace();
            }
            //获取当前线程对象的名字
            String name = Thread.currentThread().getName();
            System.out.println(name + "正在卖:" + ticket‐‐);
        }
    }
}
/*
    卖票案例出现了线程安全问题
    卖出了不存在的票和重复的票

    解决线程安全问题的二种方案:使用同步方法
    使用步骤:
        1.把访问了共享数据的代码抽取出来,放到一个方法中
        2.在方法上添加synchronized修饰符

    格式:定义方法的格式
    修饰符 synchronized 返回值类型 方法名(参数列表){
        可能会出现线程安全问题的代码(访问了共享数据的代码)
    }
 */
public class RunnableImpl implements Runnable{
    
    
    //定义一个多个线程共享的票源
    private static int ticket = 100;


    //设置线程任务:卖票
    @Override
    public void run() {
    
    
        System.out.println("this:"+this);//this:demo08.Synchronized.RunnableImpl@58ceff1
        //使用死循环,让卖票操作重复执行
        while(true){
    
    
            payTicketStatic();
        }
    }

    /*
        静态的同步方法
        锁对象是谁?
        不能是this
        this是创建对象之后产生的,静态方法优先于对象
        静态方法的锁对象是本类的class属性-->class文件对象(反射)
     */
    public static /*synchronized*/ void payTicketStatic(){
    
    
        synchronized (RunnableImpl.class){
    
    
            //先判断票是否存在
            if(ticket>0){
    
    
                //提高安全问题出现的概率,让程序睡眠
                try {
    
    
                    Thread.sleep(10);
                } catch (InterruptedException e) {
    
    
                    e.printStackTrace();
                }

                //票存在,卖票 ticket--
                System.out.println(Thread.currentThread().getName()+"-->正在卖第"+ticket+"张票");
                ticket--;
            }
        }
/*
    模拟卖票案例
    创建3个线程,同时开启,对共享的票进行出售
 */
public class Demo01Ticket {
    
    
    public static void main(String[] args) {
    
    
        //创建Runnable接口的实现类对象
        RunnableImpl run = new RunnableImpl();
        System.out.println("run:"+run);//run:demo08.Synchronized.RunnableImpl@58ceff1
        //创建Thread类对象,构造方法中传递Runnable接口的实现类对象
        Thread t0 = new Thread(run);
        Thread t1 = new Thread(run);
        Thread t2 = new Thread(run);
        //调用start方法开启多线程
        t0.start();
        t1.start();
        t2.start();
    }
}

6.5 Lock 锁

java.util.concurrent.locks.Lock 机制提供了比synchronized代码块和synchronized方法更广泛的锁定操作,同步代码块/同步方法具有的功能Lock都有,除此之外更强大,更体现面向对象。

Lock锁也称同步锁,加锁与释放锁方法化了,如下:

  • public void lock() :加同步锁。
  • public void unlock() :释放同步锁。

使用如下:

public class Ticket implements Runnable{
    
    
    private int ticket = 100;

    Lock lock = new ReentrantLock();
    /*
     * 执行卖票操作
     */
    @Override
    public void run() {
    
    
//每个窗口卖票的操作         
//窗口 永远开启         
        while(true){
    
    
            lock.lock();
            if(ticket>0){
    
    //有票 可以卖            
//出票操作                 
//使用sleep模拟一下出票时间                 
                try {
    
    
                    Thread.sleep(50);
                } catch (InterruptedException e) {
    
    
// TODO Auto‐generated catch block                    
                    e.printStackTrace();
                }
//获取当前线程对象的名字                 
                String name = Thread.currentThread().getName();
                System.out.println(name+"正在卖:"+ticket‐‐);
            }
            lock.unlock();
        }
    }
}
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

/*
    卖票案例出现了线程安全问题
    卖出了不存在的票和重复的票

    解决线程安全问题的三种方案:使用Lock锁
    java.util.concurrent.locks.Lock接口
    Lock 实现提供了比使用 synchronized 方法和语句可获得的更广泛的锁定操作。
    Lock接口中的方法:
        void lock()获取锁。
        void unlock()  释放锁。
    java.util.concurrent.locks.ReentrantLock implements Lock接口


    使用步骤:
        1.在成员位置创建一个ReentrantLock对象
        2.在可能会出现安全问题的代码前调用Lock接口中的方法lock获取锁
        3.在可能会出现安全问题的代码后调用Lock接口中的方法unlock释放锁
 */
public class RunnableImpl implements Runnable{
    
    
    //定义一个多个线程共享的票源
    private  int ticket = 100;

    //1.在成员位置创建一个ReentrantLock对象
    Lock l = new ReentrantLock();

    //设置线程任务:卖票
    @Override
    public void run() {
    
    
        //使用死循环,让卖票操作重复执行
        while(true){
    
    
            //2.在可能会出现安全问题的代码前调用Lock接口中的方法lock获取锁
            l.lock();

            //先判断票是否存在
            if(ticket>0){
    
    
                //提高安全问题出现的概率,让程序睡眠
                try {
    
    
                    Thread.sleep(10);
                    //票存在,卖票 ticket--
                    System.out.println(Thread.currentThread().getName()+"-->正在卖第"+ticket+"张票");
                    ticket--;
                } catch (InterruptedException e) {
    
    
                    e.printStackTrace();
                }finally {
    
    
                    //3.在可能会出现安全问题的代码后调用Lock接口中的方法unlock释放锁
                    l.unlock();//无论程序是否异常,都会把锁释放
                }
            }
        }
    }

    /*//设置线程任务:卖票
    @Override
    public void run() {
        //使用死循环,让卖票操作重复执行
        while(true){
           //2.在可能会出现安全问题的代码前调用Lock接口中的方法lock获取锁
           l.lock();

            //先判断票是否存在
            if(ticket>0){
                //提高安全问题出现的概率,让程序睡眠
                try {
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }

                //票存在,卖票 ticket--
                System.out.println(Thread.currentThread().getName()+"-->正在卖第"+ticket+"张票");
                ticket--;
            }

            //3.在可能会出现安全问题的代码后调用Lock接口中的方法unlock释放锁
            l.unlock();
        }
    }*/
}
/*
    模拟卖票案例
    创建3个线程,同时开启,对共享的票进行出售
 */
public class Demo01Ticket {
    
    
    public static void main(String[] args) {
    
    
        //创建Runnable接口的实现类对象
        RunnableImpl run = new RunnableImpl();
        //创建Thread类对象,构造方法中传递Runnable接口的实现类对象
        Thread t0 = new Thread(run);
        Thread t1 = new Thread(run);
        Thread t2 = new Thread(run);
        //调用start方法开启多线程
        t0.start();
        t1.start();
        t2.start();
    }
}

7. 线程状态

7.1 线程状态概述

当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态。在线程的生命周期中,有几种状态呢?在API中 java.lang.Thread.State 这个枚举中给出了六种线程状态:

这里先列出各个线程状态发生的条件,下面将会对每种状态进行详细解析

在这里插入图片描述
我们不需要去研究这几种状态的实现原理,我们只需知道在做线程操作中存在这样的状态。那我们怎么去理解这几个状态呢,新建与被终止还是很容易理解的,我们就研究一下线程从Runnable(可运行)状态与非运行状态之间的转换问题。

在这里插入图片描述

7.2 Timed Waiting (计时等待)

Timed Waiting在API中的描述为:一个正在限时等待另一个线程执行一个(唤醒)动作的线程处于这一状态。单独的去理解这句话,真是玄之又玄,其实我们在之前的操作中已经接触过这个状态了,在哪里呢?

在我们写卖票的案例中,为了减少线程执行太快,现象不明显等问题,我们在run方法中添加了sleep语句,这样就强制当前正在执行的线程休眠(暂停执行),以“减慢线程”。

其实当我们调用了sleep方法之后,当前执行的线程就进入到“休眠状态”,其实就是所谓的Timed Waiting(计时等待),那么我们通过一个案例加深对该状态的一个理解。

实现一个计数器,计数到100,在每个数字之间暂停1秒,每隔10个数字输出一个字符串

代码:

 public class MyThread extends Thread {
    
    
    public void run() {
    
    
        for (int i = 0; i < 100; i++) {
    
    
            if ((i) % 10 == 0) {
    
    
                System.out.println("‐‐‐‐‐‐‐" + i);
                }
            System.out.print(i);
            try {
    
    
                Thread.sleep(1000);
               System.out.print("    线程睡眠1秒!\n");  
            } catch (InterruptedException e) {
    
    
                e.printStackTrace();
            }
        }
    }
    public static void main(String[] args) {
    
    
        new MyThread().start();
    }
}

通过案例可以发现, sleep方法的使用还是很简单的。我们需要记住下面几点:

  1. 进入 TIMED_WAITING 状态的一种常见情形是调用的 sleep 方法,单独的线程也可以调用,不一定非要有协
    作关系。
  2. 为了让其他线程有机会执行,可以将Thread.sleep()的调用放线程run()之内。这样才能保证该线程执行过程
    中会睡眠
  3. sleep与锁无关,线程睡眠到期自动苏醒,并返回到Runnable(可运行)状态。

小提示:sleep()中指定的时间是线程不会运行的最短时间。因此,sleep()方法不能保证该线程睡眠到期后就
开始立刻执行。

Timed Waiting 线程状态图:
在这里插入图片描述

7.3 BLOCKED (锁阻塞)

Blocked 状态在API中的介绍为:一个正在阻塞等待一个监视器锁(锁对象)的线程处于这一状态。

我们已经学完同步机制,那么这个状态是非常好理解的了。比如,线程A与线程B代码中使用同一锁,如果线程A获
取到锁,线程A进入到Runnable状态,那么线程B就进入到Blocked锁阻塞状态。

这是由Runnable状态进入Blocked状态。除此Waiting以及Time Waiting状态也会在某种情况下进入阻塞状态,而
这部分内容作为扩充知识点带领大家了解一下。

Blocked 线程状态图
在这里插入图片描述

7.4 Waiting (无限等待)

Wating状态在API中介绍为:一个正在无限期等待另一个线程执行一个特别的(唤醒)动作的线程处于这一状态。

那么我们之前遇到过这种状态吗?答案是并没有,但并不妨碍我们进行一个简单深入的了解。我们通过一段代码来
学习一下:

 public class WaitingTest {
    
    
    public static Object obj = new Object();
    public static void main(String[] args) {
    
    
        // 演示waiting
        new Thread(new Runnable() {
    
    
            @Override
            public void run() {
    
    
                while (true){
    
    
                    synchronized (obj){
    
    
                        try {
    
    
                            System.out.println( Thread.currentThread().getName() +"=== 获取到锁对
 象,调用wait方法,进入waiting态,释放锁对象");
                            obj.wait();  //无限等待
                            //obj.wait(5000); //计时等待, 5秒 时间到,自动醒来
                        } catch (InterruptedException e) {
    
    
                            e.printStackTrace();
                        }
                        System.out.println( Thread.currentThread().getName() + "=== 从waiting状
态醒来,获取到锁对象,继续执行了");
                    }
                }
            }
        },"等待线程").start();
        new Thread(new Runnable() {
    
    
            @Override
            public void run() {
    
    
//                while (true){   //每隔3秒 唤醒一次
                    try {
    
    
                        System.out.println( Thread.currentThread().getName() +"‐‐‐‐‐ 等待3秒钟");
                        Thread.sleep(3000);
                    } catch (InterruptedException e) {
    
    
                        e.printStackTrace();
                    }
                    synchronized (obj){
    
    
                        System.out.println( Thread.currentThread().getName() +"‐‐‐‐‐ 获取到锁对象,调用notify方法,释放锁对象");
                        obj.notify();
                    }
                }
//            }
        },"唤醒线程").start();
    }
}

通过上述案例我们会发现,一个调用了某个对象的 Object.wait 方法的线程会等待另一个线程调用此对象的Object.notify()方法 或 Object.notifyAll()方法。

其实waiting状态并不是一个线程的操作,它体现的是多个线程间的通信,可以理解为多个线程之间的协作关系,多个线程会争取锁,同时相互之间又存在协作关系。就好比在公司里你和你的同事们,你们可能存在晋升时的竞争,但更多时候你们更多是一起合作以完成某些任务。

当多个线程协作时,比如A,B线程,如果A线程在Runnable(可运行)状态中调用了wait()方法那么A线程就进入了Waiting(无限等待)状态,同时失去了同步锁。假如这个时候B线程获取到了同步锁,在运行状态中调用了notify()方法,那么就会将无限等待的A线程唤醒。注意是唤醒,如果获取到锁对象,那么A线程唤醒后就进入
Runnable(可运行)状态;如果没有获取锁对象,那么就进入到Blocked(锁阻塞状态)。

Waiting 线程状态图
在这里插入图片描述

7.5 补充知识点

到此为止我们已经对线程状态有了基本的认识,想要有更多的了解,详情可以见下图:
在这里插入图片描述

一条有意思的tips:
我们在翻阅API的时候会发现Timed Waiting(计时等待) 与 Waiting(无限等待)状态联系还是很紧密的, 比如Waiting(无限等待) 状态中wait方法是空参的,而timed waiting(计时等待)中wait方法是带参的。 这种带参的方法,其实是一种倒计时操作,相当于我们生活中的小闹钟,我们设定好时间,到时通知,可是如果提前得到(唤醒)通知,那么设定好时间在通知也就显得多此一举了,那么这种设计方案其实是一举两得。如果没有得到(唤醒)通知,那么线程就处于Timed Waiting状态,直到倒计时完毕自动醒来;如果在倒计时期间得到(唤醒)通知,那么线程从Timed Waiting状态立刻唤醒。

在这里插入图片描述

/*
    等待唤醒案例:线程之间的通信
        创建一个顾客线程(消费者):告知老板要的包子的种类和数量,调用wait方法,放弃cpu的执行,进入到WAITING状态(无限等待)
        创建一个老板线程(生产者):花了5秒做包子,做好包子之后,调用notify方法,唤醒顾客吃包子

    注意:
        顾客和老板线程必须使用同步代码块包裹起来,保证等待和唤醒只能有一个在执行
        同步使用的锁对象必须保证唯一
        只有锁对象才能调用wait和notify方法

    Obejct类中的方法
    void wait()
          在其他线程调用此对象的 notify() 方法或 notifyAll() 方法前,导致当前线程等待。
    void notify()
          唤醒在此对象监视器上等待的单个线程。
          会继续执行wait方法之后的代码
 */
public class Demo01WaitAndNotify {
    
    
    public static void main(String[] args) {
    
    
        //创建锁对象,保证唯一
        Object obj = new Object();
        // 创建一个顾客线程(消费者)
        new Thread(){
    
    
            @Override
            public void run() {
    
    
               //一直等着买包子
               while(true){
    
    
                   //保证等待和唤醒的线程只能有一个执行,需要使用同步技术
                   synchronized (obj){
    
    
                       System.out.println("告知老板要的包子的种类和数量");
                       //调用wait方法,放弃cpu的执行,进入到WAITING状态(无限等待)
                       try {
    
    
                           obj.wait();
                       } catch (InterruptedException e) {
    
    
                           e.printStackTrace();
                       }
                       //唤醒之后执行的代码
                       System.out.println("包子已经做好了,开吃!");
                       System.out.println("---------------------------------------");
                   }
               }
            }
        }.start();

        //创建一个老板线程(生产者)
        new Thread(){
    
    
            @Override
            public void run() {
    
    
                //一直做包子
                while (true){
    
    
                    //花了5秒做包子
                    try {
    
    
                        Thread.sleep(5000);//花5秒钟做包子
                    } catch (InterruptedException e) {
    
    
                        e.printStackTrace();
                    }

                    //保证等待和唤醒的线程只能有一个执行,需要使用同步技术
                    synchronized (obj){
    
    
                        System.out.println("老板5秒钟之后做好包子,告知顾客,可以吃包子了");
                        //做好包子之后,调用notify方法,唤醒顾客吃包子
                        obj.notify();
                    }
                }
            }
        }.start();
    }
}
/*
    进入到TimeWaiting(计时等待)有两种方式
    1.使用sleep(long m)方法,在毫秒值结束之后,线程睡醒进入到Runnable/Blocked状态
    2.使用wait(long m)方法,wait方法如果在毫秒值结束之后,还没有被notify唤醒,就会自动醒来,线程睡醒进入到Runnable/Blocked状态

    唤醒的方法:
         void notify() 唤醒在此对象监视器上等待的单个线程。
         void notifyAll() 唤醒在此对象监视器上等待的所有线程。
 */
public class Demo02WaitAndNotify {
    
    
    public static void main(String[] args) {
    
    
        //创建锁对象,保证唯一
        Object obj = new Object();
        // 创建一个顾客线程(消费者)
        new Thread(){
    
    
            @Override
            public void run() {
    
    
                //一直等着买包子
                while(true){
    
    
                    //保证等待和唤醒的线程只能有一个执行,需要使用同步技术
                    synchronized (obj){
    
    
                        System.out.println("顾客1告知老板要的包子的种类和数量");
                        //调用wait方法,放弃cpu的执行,进入到WAITING状态(无限等待)
                        try {
    
    
                            obj.wait();
                        } catch (InterruptedException e) {
    
    
                            e.printStackTrace();
                        }
                        //唤醒之后执行的代码
                        System.out.println("包子已经做好了,顾客1开吃!");
                        System.out.println("---------------------------------------");
                    }
                }
            }
        }.start();

        // 创建一个顾客线程(消费者)
        new Thread(){
    
    
            @Override
            public void run() {
    
    
                //一直等着买包子
                while(true){
    
    
                    //保证等待和唤醒的线程只能有一个执行,需要使用同步技术
                    synchronized (obj){
    
    
                        System.out.println("顾客2告知老板要的包子的种类和数量");
                        //调用wait方法,放弃cpu的执行,进入到WAITING状态(无限等待)
                        try {
    
    
                            obj.wait();
                        } catch (InterruptedException e) {
    
    
                            e.printStackTrace();
                        }
                        //唤醒之后执行的代码
                        System.out.println("包子已经做好了,顾客2开吃!");
                        System.out.println("---------------------------------------");
                    }
                }
            }
        }.start();

        //创建一个老板线程(生产者)
        new Thread(){
    
    
            @Override
            public void run() {
    
    
                //一直做包子
                while (true){
    
    
                    //花了5秒做包子
                    try {
    
    
                        Thread.sleep(5000);//花5秒钟做包子
                    } catch (InterruptedException e) {
    
    
                        e.printStackTrace();
                    }

                    //保证等待和唤醒的线程只能有一个执行,需要使用同步技术
                    synchronized (obj){
    
    
                        System.out.println("老板5秒钟之后做好包子,告知顾客,可以吃包子了");
                        //做好包子之后,调用notify方法,唤醒顾客吃包子
                        //obj.notify();//如果有多个等待线程,随机唤醒一个
                        obj.notifyAll();//唤醒所有等待的线程
                    }
                }
            }
        }.start();
    }
}

8. 等待唤醒机制

8.1 线程间通信

概念: 多个线程在处理同一个资源,但是处理的动作(线程的任务)却不相同。

比如:线程A用来生成包子的,线程B用来吃包子的,包子可以理解为同一资源,线程A与线程B处理的动作,一个是生产,一个是消费,那么线程A与线程B之间就存在线程通信问题。

在这里插入图片描述
在这里插入图片描述

为什么要处理线程间通信:

多个线程并发执行时, 在默认情况下CPU是随机切换线程的,当我们需要多个线程来共同完成一件任务,并且我们希望他们有规律的执行, 那么多线程之间需要一些协调通信,以此来帮我们达到多线程共同操作一份数据。

如何保证线程间通信有效利用资源:

多个线程在处理同一个资源,并且任务不同时,需要线程通信来帮助解决线程之间对同一个变量的使用或操作。 就是多个线程在操作同一份数据时, 避免对同一共享变量的争夺。也就是我们需要通过一定的手段使各个线程能有效的利用资源。而这种手段即—— 等待唤醒机制。

8.2 等待唤醒机制

什么是等待唤醒机制

这是多个线程间的一种协作机制。谈到线程我们经常想到的是线程间的竞争(race),比如去争夺锁,但这并不是故事的全部,线程间也会有协作机制。就好比在公司里你和你的同事们,你们可能存在在晋升时的竞争,但更多时候你们更多是一起合作以完成某些任务。

就是在一个线程进行了规定操作后,就进入等待状态(wait()), 等待其他线程执行完他们的指定代码过后 再将其唤醒(notify());在有多个线程进行等待时, 如果需要,可以使用 notifyAll()来唤醒所有的等待线程。

wait/notify 就是线程间的一种协作机制。

等待唤醒中的方法

等待唤醒机制就是用于解决线程间通信的问题的,使用到的3个方法的含义如下:

  1. wait:线程不再活动,不再参与调度,进入 wait set 中,因此不会浪费 CPU 资源,也不会去竞争锁了,这时的线程状态即是 WAITING。它还要等着别的线程执行一个特别的动作,也即是“通知(notify)”在这个对象上等待的线程从wait set 中释放出来,重新进入到调度队列(ready queue)中
  2. notify:则选取所通知对象的 wait set 中的一个线程释放;例如,餐馆有空位置后,等候就餐最久的顾客最先入座。
  3. notifyAll:则释放所通知对象的 wait set 上的全部线程。

注意:

哪怕只通知了一个等待的线程,被通知线程也不能立即恢复执行,因为它当初中断的地方是在同步块内,而此刻它已经不持有锁,所以她需要再次尝试去获取锁(很可能面临其它线程的竞争),成功后才能在当初调用 wait 方法之后的地方恢复执行。

总结如下:

  • 如果能获取锁,线程就从 WAITING 状态变成 RUNNABLE 状态;
  • 否则,从 wait set 出来,又进入 entry set,线程就从 WAITING 状态又变成 BLOCKED 状态

调用wait和notify方法需要注意的细节

  1. wait方法与notify方法必须要由同一个锁对象调用。因为:对应的锁对象可以通过notify唤醒使用同一个锁对象调用的wait方法后的线程。
  2. wait方法与notify方法是属于Object类的方法的。因为:锁对象可以是任意对象,而任意对象的所属类都是继承了Object类的。
  3. wait方法与notify方法必须要在同步代码块或者是同步函数中使用。因为:必须要通过锁对象调用这2个方法。

8.3 生产者与消费者问题

等待唤醒机制其实就是经典的“生产者与消费者”的问题。

就拿生产包子消费包子来说等待唤醒机制如何有效利用资源:

包子铺线程生产包子,吃货线程消费包子。当包子没有时(包子状态为false),吃货线程等待,包子铺线程生产包子(即包子状态为true),并通知吃货线程(解除吃货的等待状态),因为已经有包子了,那么包子铺线程进入等待状态。接下来,吃货线程能否进一步执行则取决于锁的获取情况。如果吃货获取到锁,那么就执行吃包子动作,包子吃完(包子状态为false),并通知包子铺线程(解除包子铺的等待状态),吃货线程进入等待。包子铺线程能否进一步执行则取决于锁的获取情况。

代码演示:

包子资源类:

public class BaoZi {
    
    
     String  pier ;
     String  xianer ;
     boolean  flag = false ;//包子资源 是否存在  包子资源状态
}

吃货线程类:

public class ChiHuo extends Thread{
    
    
    private BaoZi bz;

    public ChiHuo(String name,BaoZi bz){
    
    
        super(name);
        this.bz = bz;
    }
    @Override
    public void run() {
    
    
        while(true){
    
    
            synchronized (bz){
    
    
                if(bz.flag == false){
    
    //没包子
                    try {
    
    
                        bz.wait();
                    } catch (InterruptedException e) {
    
    
                        e.printStackTrace();
                    }
                }
                System.out.println("吃货正在吃"+bz.pier+bz.xianer+"包子");
                bz.flag = false;
                bz.notify();
            }
        }
    }
}

包子铺线程类:

public class BaoZiPu extends Thread {
    
    

    private BaoZi bz;

    public BaoZiPu(String name,BaoZi bz){
    
    
        super(name);
        this.bz = bz;
    }

    @Override
    public void run() {
    
    
        int count = 0;
        //造包子
        while(true){
    
    
            //同步
            synchronized (bz){
    
    
                if(bz.flag == true){
    
    //包子资源  存在
                    try {
    
    

                        bz.wait();

                    } catch (InterruptedException e) {
    
    
                        e.printStackTrace();
                    }
                }

                // 没有包子  造包子
                System.out.println("包子铺开始做包子");
                if(count%2 == 0){
    
    
                    // 冰皮  五仁
                    bz.pier = "冰皮";
                    bz.xianer = "五仁";
                }else{
    
    
                    // 薄皮  牛肉大葱
                    bz.pier = "薄皮";
                    bz.xianer = "牛肉大葱";
                }
                count++;

                bz.flag=true;
                System.out.println("包子造好了:"+bz.pier+bz.xianer);
                System.out.println("吃货来吃吧");
                //唤醒等待线程 (吃货)
                bz.notify();
            }
        }
    }
}

测试类:

public class Demo {
    
    
    public static void main(String[] args) {
    
    
        //等待唤醒案例
        BaoZi bz = new BaoZi();

        ChiHuo ch = new ChiHuo("吃货",bz);
        BaoZiPu bzp = new BaoZiPu("包子铺",bz);

        ch.start();
        bzp.start();
    }
}

执行效果:

包子铺开始做包子
包子造好了:冰皮五仁
吃货来吃吧
吃货正在吃冰皮五仁包子
包子铺开始做包子
包子造好了:薄皮牛肉大葱
吃货来吃吧
吃货正在吃薄皮牛肉大葱包子
包子铺开始做包子
包子造好了:冰皮五仁
吃货来吃吧
吃货正在吃冰皮五仁包子



/*
    生产者(包子铺)类:是一个线程类,可以继承Thread
	设置线程任务(run):生产包子
	对包子的状态进行判断
	true:有包子
		包子铺调用wait方法进入等待状态
	false:没有包子
		包子铺生产包子
		增加一些趣味性:交替生产两种包子
			有两种状态(i%2==0)
		包子铺生产好了包子
		修改包子的状态为true有
		唤醒吃货线程,让吃货线程吃包子

	注意:
	    包子铺线程和包子线程关系-->通信(互斥)
	    必须同时同步技术保证两个线程只能有一个在执行
	    锁对象必须保证唯一,可以使用包子对象作为锁对象
	    包子铺类和吃货的类就需要把包子对象作为参数传递进来
	        1.需要在成员位置创建一个包子变量
	        2.使用带参数构造方法,为这个包子变量赋值
 */
public class BaoZiPu extends Thread{
    
    
    //1.需要在成员位置创建一个包子变量
    private BaoZi bz;

    //2.使用带参数构造方法,为这个包子变量赋值
    public BaoZiPu(BaoZi bz) {
    
    
        this.bz = bz;
    }

    //设置线程任务(run):生产包子
    @Override
    public void run() {
    
    
        //定义一个变量
        int count = 0;
        //让包子铺一直生产包子
        while(true){
    
    
            //必须同时同步技术保证两个线程只能有一个在执行
            synchronized (bz){
    
    
                //对包子的状态进行判断
                if(bz.flag==true){
    
    
                    //包子铺调用wait方法进入等待状态
                    try {
    
    
                        bz.wait();
                    } catch (InterruptedException e) {
    
    
                        e.printStackTrace();
                    }
                }

                //被唤醒之后执行,包子铺生产包子
                //增加一些趣味性:交替生产两种包子
                if(count%2==0){
    
    
                    //生产 薄皮三鲜馅包子
                    bz.pi = "薄皮";
                    bz.xian = "三鲜馅";
                }else{
    
    
                    //生产 冰皮 牛肉大葱陷
                    bz.pi = "冰皮";
                    bz.xian = "牛肉大葱陷";

                }
                count++;
                System.out.println("包子铺正在生产:"+bz.pi+bz.xian+"包子");
                //生产包子需要3秒钟
                try {
    
    
                    Thread.sleep(3000);
                } catch (InterruptedException e) {
    
    
                    e.printStackTrace();
                }
                //包子铺生产好了包子
                //修改包子的状态为true有
                bz.flag = true;
                //唤醒吃货线程,让吃货线程吃包子
                bz.notify();
                System.out.println("包子铺已经生产好了:"+bz.pi+bz.xian+"包子,吃货可以开始吃了");
            }
        }
    }
}
/*
    资源类:包子类
	设置包子的属性
		皮
		陷
		包子的状态: 有 true,没有 false
 */
public class BaoZi {
    
    
    //皮
    String pi;
    //陷
    String xian;
    //包子的状态: 有 true,没有 false,设置初始值为false没有包子
    boolean flag = false;

}
/*
    消费者(吃货)类:是一个线程类,可以继承Thread
	设置线程任务(run):吃包子
	对包子的状态进行判断
	false:没有包子
		吃货调用wait方法进入等待状态
	true:有包子
		吃货吃包子
		吃货吃完包子
		修改包子的状态为false没有
		吃货唤醒包子铺线程,生产包子
 */
public class ChiHuo extends Thread{
    
    
    //1.需要在成员位置创建一个包子变量
    private BaoZi bz;

    //2.使用带参数构造方法,为这个包子变量赋值
    public ChiHuo(BaoZi bz) {
    
    
        this.bz = bz;
    }
    //设置线程任务(run):吃包子
    @Override
    public void run() {
    
    
        //使用死循环,让吃货一直吃包子
        while (true){
    
    
            //必须同时同步技术保证两个线程只能有一个在执行
            synchronized (bz){
    
    
                //对包子的状态进行判断
                if(bz.flag==false){
    
    
                    //吃货调用wait方法进入等待状态
                    try {
    
    
                        bz.wait();
                    } catch (InterruptedException e) {
    
    
                        e.printStackTrace();
                    }
                }

                //被唤醒之后执行的代码,吃包子
                System.out.println("吃货正在吃:"+bz.pi+bz.xian+"的包子");
                //吃货吃完包子
                //修改包子的状态为false没有
                bz.flag = false;
                //吃货唤醒包子铺线程,生产包子
                bz.notify();
                System.out.println("吃货已经把:"+bz.pi+bz.xian+"的包子吃完了,包子铺开始生产包子");
                System.out.println("----------------------------------------------------");
            }
        }
    }
}

/*
    测试类:
	包含main方法,程序执行的入口,启动程序
	创建包子对象;
	创建包子铺线程,开启,生产包子;
	创建吃货线程,开启,吃包子;
 */
public class Demo {
    
    
    public static void main(String[] args) {
    
    
        //创建包子对象;
        BaoZi bz =new BaoZi();
        //创建包子铺线程,开启,生产包子;
        new BaoZiPu(bz).start();
        //创建吃货线程,开启,吃包子;
        new ChiHuo(bz).start();
    }
}

9. 线程池

9.1 线程池思想概述

在这里插入图片描述

我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题:

如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统的效率,因为频繁创建线程和销毁线程需要时间。

那么有没有一种办法使得线程可以复用,就是执行完一个任务,并不被销毁,而是可以继续执行其他的任务?

在Java中可以通过线程池来达到这样的效果。今天我们就来详细讲解一下Java的线程池。

9.2 线程池概念

  • **线程池:**其实就是一个容纳多个线程的容器,其中的线程可以反复使用,省去了频繁创建线程对象的操作,无需反复创建线程而消耗过多资源。

由于线程池中有很多操作都是与优化资源相关的,我们在这里就不多赘述。我们通过一张图来了解线程池的工作原理:

在这里插入图片描述
在这里插入图片描述

合理利用线程池能够带来三个好处:

  1. 降低资源消耗。减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务。
  2. 提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
  3. 提高线程的可管理性。可以根据系统的承受能力,调整线程池中工作线线程的数目,防止因为消耗过多的内存,而把服务器累趴下(每个线程需要大约1MB内存,线程开的越多,消耗的内存也就越大,最后死机)。

9.3 线程池的使用

Java里面线程池的顶级接口是java.util.concurrent.Executor,但是严格意义上讲Executor并不是一个线程池,而只是一个执行线程的工具。真正的线程池接口是java.util.concurrent.ExecutorService

要配置一个线程池是比较复杂的,尤其是对于线程池的原理不是很清楚的情况下,很有可能配置的线程池不是较优的,因此在java.util.concurrent.Executors线程工厂类里面提供了一些静态工厂,生成一些常用的线程池。官方建议使用Executors工程类来创建线程池对象。

Executors类中有个创建线程池的方法如下:

  • public static ExecutorService newFixedThreadPool(int nThreads):返回线程池对象。(创建的是有界线程池,也就是池中的线程个数可以指定最大数量)

获取到了一个线程池ExecutorService 对象,那么怎么使用呢,在这里定义了一个使用线程池对象的方法如下:

  • public Future<?> submit(Runnable task):获取线程池中的某一个线程对象,并执行

    Future接口:用来记录线程任务执行完毕后产生的结果。线程池创建与使用。

使用线程池中线程对象的步骤:

  1. 创建线程池对象。
  2. 创建Runnable接口子类对象。(task)
  3. 提交Runnable接口子类对象。(take task)
  4. 关闭线程池(一般不做)。

Runnable实现类代码:

public class MyRunnable implements Runnable {
    
    
    @Override
    public void run() {
    
    
        System.out.println("我要一个教练");
        try {
    
    
            Thread.sleep(2000);
        } catch (InterruptedException e) {
    
    
            e.printStackTrace();
        }
        System.out.println("教练来了: " + Thread.currentThread().getName());
        System.out.println("教我游泳,交完后,教练回到了游泳池");
    }
}

线程池测试类:

public class ThreadPoolDemo {
    
    
    public static void main(String[] args) {
    
    
        // 创建线程池对象
        ExecutorService service = Executors.newFixedThreadPool(2);//包含2个线程对象
        // 创建Runnable实例对象
        MyRunnable r = new MyRunnable();

        //自己创建线程对象的方式
        // Thread t = new Thread(r);
        // t.start(); ---> 调用MyRunnable中的run()

        // 从线程池中获取线程对象,然后调用MyRunnable中的run()
        service.submit(r);
        // 再获取个线程对象,调用MyRunnable中的run()
        service.submit(r);
        service.submit(r);
        // 注意:submit方法调用结束后,程序并不终止,是因为线程池控制了线程的关闭。
        // 将使用完的线程又归还到了线程池中
        // 关闭线程池
        //service.shutdown();
    }
}
/*
    2.创建一个类,实现Runnable接口,重写run方法,设置线程任务
 */
public class RunnableImpl implements Runnable{
    
    
    @Override
    public void run() {
    
    
        System.out.println(Thread.currentThread().getName()+"创建了一个新的线程执行");
    }
}



import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/*
    线程池:JDK1.5之后提供的
    java.util.concurrent.Executors:线程池的工厂类,用来生成线程池
    Executors类中的静态方法:
        static ExecutorService newFixedThreadPool(int nThreads) 创建一个可重用固定线程数的线程池
        参数:
            int nThreads:创建线程池中包含的线程数量
        返回值:
            ExecutorService接口,返回的是ExecutorService接口的实现类对象,我们可以使用ExecutorService接口接收(面向接口编程)
    java.util.concurrent.ExecutorService:线程池接口
        用来从线程池中获取线程,调用start方法,执行线程任务
            submit(Runnable task) 提交一个 Runnable 任务用于执行
        关闭/销毁线程池的方法
            void shutdown()
    线程池的使用步骤:
        1.使用线程池的工厂类Executors里边提供的静态方法newFixedThreadPool生产一个指定线程数量的线程池
        2.创建一个类,实现Runnable接口,重写run方法,设置线程任务
        3.调用ExecutorService中的方法submit,传递线程任务(实现类),开启线程,执行run方法
        4.调用ExecutorService中的方法shutdown销毁线程池(不建议执行)
 */
public class Demo01ThreadPool {
    
    
    public static void main(String[] args) {
    
    
        //1.使用线程池的工厂类Executors里边提供的静态方法newFixedThreadPool生产一个指定线程数量的线程池
        ExecutorService es = Executors.newFixedThreadPool(2);
        //3.调用ExecutorService中的方法submit,传递线程任务(实现类),开启线程,执行run方法
        es.submit(new RunnableImpl());//pool-1-thread-1创建了一个新的线程执行
        //线程池会一直开启,使用完了线程,会自动把线程归还给线程池,线程可以继续使用
        es.submit(new RunnableImpl());//pool-1-thread-1创建了一个新的线程执行
        es.submit(new RunnableImpl());//pool-1-thread-2创建了一个新的线程执行

        //4.调用ExecutorService中的方法shutdown销毁线程池(不建议执行)
        es.shutdown();

        es.submit(new RunnableImpl());//抛异常,线程池都没有了,就不能获取线程了
    }

}

10. Lambda表达式

10.1 函数式编程思想概述

在这里插入图片描述

在数学中,函数就是有输入量、输出量的一套计算方案,也就是“拿什么东西做什么事情”。相对而言,面向对象过分强调“必须通过对象的形式来做事情”,而函数式思想则尽量忽略面向对象的复杂语法——强调做什么,而不是以什么形式做

面向对象的思想:

​ 做一件事情,找一个能解决这个事情的对象,调用对象的方法,完成事情.

函数式编程思想:

​ 只要能获取到结果,谁去做的,怎么做的都不重要,重视的是结果,不重视过程

10.2 冗余的Runnable代码

传统写法

当需要启动一个线程去完成任务时,通常会通过java.lang.Runnable接口来定义任务内容,并使用java.lang.Thread类来启动该线程。代码如下:

public class Demo01Runnable {
    
    
	public static void main(String[] args) {
    
    
    	// 匿名内部类
		Runnable task = new Runnable() {
    
    
			@Override
			public void run() {
    
     // 覆盖重写抽象方法
				System.out.println("多线程任务执行!");
			}
		};
		new Thread(task).start(); // 启动线程
	}
}

本着“一切皆对象”的思想,这种做法是无可厚非的:首先创建一个Runnable接口的匿名内部类对象来指定任务内容,再将其交给一个线程来启动。

代码分析

对于Runnable的匿名内部类用法,可以分析出几点内容:

  • Thread类需要Runnable接口作为参数,其中的抽象run方法是用来指定线程任务内容的核心;
  • 为了指定run的方法体,不得不需要Runnable接口的实现类;
  • 为了省去定义一个RunnableImpl实现类的麻烦,不得不使用匿名内部类;
  • 必须覆盖重写抽象run方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错;
  • 而实际上,似乎只有方法体才是关键所在
/*
    使用实现Runnable接口的方式实现多线程程序
 */
public class Demo01Runnable {
    
    
    public static void main(String[] args) {
    
    
        //创建Runnable接口的实现类对象
        RunnableImpl run = new RunnableImpl();
        //创建Thread类对象,构造方法中传递Runnable接口的实现类
        Thread t = new Thread(run);
        //调用start方法开启新线程,执行run方法
        t.start();

        //简化代码,使用匿名内部类,实现多线程程序
        Runnable r = new Runnable(){
    
    
            @Override
            public void run() {
    
    
                System.out.println(Thread.currentThread().getName()+" 新线程创建了");
            }
        };
        new Thread(r).start();

        //简化代码
        new Thread(new Runnable(){
    
    
            @Override
            public void run() {
    
    
                System.out.println(Thread.currentThread().getName()+" 新线程创建了");
            }
        }).start();
    }
}

10.3 编程思想转换

做什么,而不是怎么做

我们真的希望创建一个匿名内部类对象吗?不。我们只是为了做这件事情而不得不创建一个对象。我们真正希望做的事情是:将run方法体内的代码传递给Thread类知晓。

传递一段代码——这才是我们真正的目的。而创建对象只是受限于面向对象语法而不得不采取的一种手段方式。那,有没有更加简单的办法?如果我们将关注点从“怎么做”回归到“做什么”的本质上,就会发现只要能够更好地达到目的,过程与形式其实并不重要。

生活举例

在这里插入图片描述

当我们需要从北京到上海时,可以选择高铁、汽车、骑行或是徒步。我们的真正目的是到达上海,而如何才能到达上海的形式并不重要,所以我们一直在探索有没有比高铁更好的方式——搭乘飞机。

在这里插入图片描述

而现在这种飞机(甚至是飞船)已经诞生:2014年3月Oracle所发布的Java 8(JDK 1.8)中,加入了Lambda表达式的重量级新特性,为我们打开了新世界的大门。

10.4 体验Lambda的更优写法

借助Java 8的全新语法,上述Runnable接口的匿名内部类写法可以通过更简单的Lambda表达式达到等效:

public class Demo02LambdaRunnable {
    
    
	public static void main(String[] args) {
    
    
		new Thread(() -> System.out.println("多线程任务执行!")).start(); // 启动线程
	}
}

这段代码和刚才的执行效果是完全一样的,可以在1.8或更高的编译级别下通过。从代码的语义中可以看出:我们启动了一个线程,而线程任务的内容以一种更加简洁的形式被指定。

不再有“不得不创建接口对象”的束缚,不再有“抽象方法覆盖重写”的负担,就是这么简单!

10.5 回顾匿名内部类

Lambda是怎样击败面向对象的?在上例中,核心代码其实只是如下所示的内容:

() -> System.out.println("多线程任务执行!")

为了理解Lambda的语义,我们需要从传统的代码起步。

使用实现类

要启动一个线程,需要创建一个Thread类的对象并调用start方法。而为了指定线程执行的内容,需要调用Thread类的构造方法:

  • public Thread(Runnable target)

为了获取Runnable接口的实现对象,可以为该接口定义一个实现类RunnableImpl

public class RunnableImpl implements Runnable {
    
    
	@Override
	public void run() {
    
    
		System.out.println("多线程任务执行!");
	}
}

然后创建该实现类的对象作为Thread类的构造参数:

public class Demo03ThreadInitParam {
    
    
	public static void main(String[] args) {
    
    
		Runnable task = new RunnableImpl();
		new Thread(task).start();
	}
}

使用匿名内部类

这个RunnableImpl类只是为了实现Runnable接口而存在的,而且仅被使用了唯一一次,所以使用匿名内部类的语法即可省去该类的单独定义,即匿名内部类:

public class Demo04ThreadNameless {
    
    
	public static void main(String[] args) {
    
    
		new Thread(new Runnable() {
    
    
			@Override
			public void run() {
    
    
				System.out.println("多线程任务执行!");
			}
		}).start();
	}
}

匿名内部类的好处与弊端

一方面,匿名内部类可以帮我们省去实现类的定义;另一方面,匿名内部类的语法——确实太复杂了!

语义分析

仔细分析该代码中的语义,Runnable接口只有一个run方法的定义:

  • public abstract void run();

即制定了一种做事情的方案(其实就是一个函数):

  • 无参数:不需要任何条件即可执行该方案。
  • 无返回值:该方案不产生任何结果。
  • 代码块(方法体):该方案的具体执行步骤。

同样的语义体现在Lambda语法中,要更加简单:

() -> System.out.println("多线程任务执行!")
  • 前面的一对小括号即run方法的参数(无),代表不需要任何条件;
  • 中间的一个箭头代表将前面的参数传递给后面的代码;
  • 后面的输出语句即业务逻辑代码。

10.6 Lambda标准格式

Lambda省去面向对象的条条框框,格式由3个部分组成:

  • 一些参数
  • 一个箭头
  • 一段代码

Lambda表达式的标准格式为:

(参数类型 参数名称) -> { 代码语句 }

格式说明:

  • 小括号内的语法与传统方法参数列表一致:无参数则留空;多个参数则用逗号分隔。
  • ->是新引入的语法格式,代表指向动作。
  • 大括号内的语法与传统方法体要求基本一致。
/*
    创建Runnable接口的实现类,重写run方法,设置线程任务
 */
public class RunnableImpl implements Runnable{
    
    
    @Override
    public void run() {
    
    
        System.out.println(Thread.currentThread().getName()+" 新线程创建了");
    }
}
/*
    Lambda表达式的标准格式:
        由三部分组成:
            a.一些参数
            b.一个箭头
            c.一段代码
        格式:
            (参数列表) -> {一些重写方法的代码};
        解释说明格式:
            ():接口中抽象方法的参数列表,没有参数,就空着;有参数就写出参数,多个参数使用逗号分隔
            ->:传递的意思,把参数传递给方法体{}
            {}:重写接口的抽象方法的方法体
 */
public class Demo02Lambda {
    
    
    public static void main(String[] args) {
    
    
        //使用匿名内部类的方式,实现多线程
        new Thread(new Runnable(){
    
    
            @Override
            public void run() {
    
    
                System.out.println(Thread.currentThread().getName()+" 新线程创建了");
            }
        }).start();

        //使用Lambda表达式,实现多线程
        new Thread(()->{
    
    
                System.out.println(Thread.currentThread().getName()+" 新线程创建了");
            }
        ).start();

        //优化省略Lambda
        new Thread(()->System.out.println(Thread.currentThread().getName()+" 新线程创建了")).start();
    }
}

10.7 练习:使用Lambda标准格式(无参无返回)

题目

给定一个厨子Cook接口,内含唯一的抽象方法makeFood,且无参数、无返回值。如下:

public interface Cook {
    
    
    void makeFood();
}

在下面的代码中,请使用Lambda的标准格式调用invokeCook方法,打印输出“吃饭啦!”字样:

public class Demo05InvokeCook {
    
    
    public static void main(String[] args) {
    
    
        // TODO 请在此使用Lambda【标准格式】调用invokeCook方法
    }

    private static void invokeCook(Cook cook) {
    
    
        cook.makeFood();
    }
}

解答

public static void main(String[] args) {
    
    
    invokeCook(() -> {
    
    
      	System.out.println("吃饭啦!");
    });
}

备注:小括号代表Cook接口makeFood抽象方法的参数为空,大括号代表makeFood的方法体。

/*
    定一个厨子Cook接口,内含唯一的抽象方法makeFood
 */
public interface Cook {
    
    
    //定义无参数无返回值的方法makeFood
    public abstract void makeFood();
}
/*
    需求:
        给定一个厨子Cook接口,内含唯一的抽象方法makeFood,且无参数、无返回值。
        使用Lambda的标准格式调用invokeCook方法,打印输出“吃饭啦!”字样
 */
public class Demo01Cook {
    
    
    public static void main(String[] args) {
    
    
        //调用invokeCook方法,参数是Cook接口,传递Cook接口的匿名内部类对象
        invokeCook(new Cook() {
    
    
            @Override
            public void makeFood() {
    
    
                System.out.println("吃饭了");
            }
        });

        //使用Lambda表达式,简化匿名内部类的书写
        invokeCook(()->{
    
    
            System.out.println("吃饭了");
        });

        //优化省略Lambda
        invokeCook(()-> System.out.println("吃饭了"));
    }

    //定义一个方法,参数传递Cook接口,方法内部调用Cook接口中的方法makeFood
    public static void invokeCook(Cook cook){
    
    
        cook.makeFood();
    }
}

10.8 Lambda的参数和返回值

需求:
    使用数组存储多个Person对象
    对数组中的Person对象使用Arrays的sort方法通过年龄进行升序排序

下面举例演示java.util.Comparator<T>接口的使用场景代码,其中的抽象方法定义为:

  • public abstract int compare(T o1, T o2);

当需要对一个对象数组进行排序时,Arrays.sort方法需要一个Comparator接口实例来指定排序的规则。假设有一个Person类,含有String nameint age两个成员变量:

public class Person {
    
     
    private String name;
    private int age;
    
    // 省略构造器、toString方法与Getter Setter 
}

传统写法

如果使用传统的代码对Person[]数组进行排序,写法如下:

import java.util.Arrays;
import java.util.Comparator;

public class Demo06Comparator {
    
    
    public static void main(String[] args) {
    
    
      	// 本来年龄乱序的对象数组
        Person[] array = {
    
    
        	new Person("古力娜扎", 19),
        	new Person("迪丽热巴", 18),
       		new Person("马尔扎哈", 20) };

      	// 匿名内部类
        Comparator<Person> comp = new Comparator<Person>() {
    
    
            @Override
            public int compare(Person o1, Person o2) {
    
    
                return o1.getAge() - o2.getAge();
            }
        };
        Arrays.sort(array, comp); // 第二个参数为排序规则,即Comparator接口实例

        for (Person person : array) {
    
    
            System.out.println(person);
        }
    }
}

这种做法在面向对象的思想中,似乎也是“理所当然”的。其中Comparator接口的实例(使用了匿名内部类)代表了“按照年龄从小到大”的排序规则。

代码分析

下面我们来搞清楚上述代码真正要做什么事情。

  • 为了排序,Arrays.sort方法需要排序规则,即Comparator接口的实例,抽象方法compare是关键;
  • 为了指定compare的方法体,不得不需要Comparator接口的实现类;
  • 为了省去定义一个ComparatorImpl实现类的麻烦,不得不使用匿名内部类;
  • 必须覆盖重写抽象compare方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错;
  • 实际上,只有参数和方法体才是关键

Lambda写法

import java.util.Arrays;

public class Demo07ComparatorLambda {
    
    
    public static void main(String[] args) {
    
    
        Person[] array = {
    
    
          	new Person("古力娜扎", 19),
          	new Person("迪丽热巴", 18),
          	new Person("马尔扎哈", 20) };

        Arrays.sort(array, (Person a, Person b) -> {
    
    
          	return a.getAge() - b.getAge();
        });

        for (Person person : array) {
    
    
            System.out.println(person);
        }
    }
}

10.9 练习:使用Lambda标准格式(有参有返回)

题目

给定一个计算器Calculator接口,内含抽象方法calc可以将两个int数字相加得到和值:

public interface Calculator {
    
    
    int calc(int a, int b);
}

在下面的代码中,请使用Lambda的标准格式调用invokeCalc方法,完成120和130的相加计算:

public class Demo08InvokeCalc {
    
    
    public static void main(String[] args) {
    
    
        // TODO 请在此使用Lambda【标准格式】调用invokeCalc方法来计算120+130的结果ß
    }

    private static void invokeCalc(int a, int b, Calculator calculator) {
    
    
        int result = calculator.calc(a, b);
        System.out.println("结果是:" + result);
    }
}

解答

public static void main(String[] args) {
    
    
    invokeCalc(120, 130, (int a, int b) -> {
    
    
      	return a + b;
    });
}

备注:小括号代表Calculator接口calc抽象方法的参数,大括号代表calc的方法体。

public class Person {
    
    
    private String name;
    private int age;

    public Person() {
    
    
    }

    public Person(String name, int age) {
    
    
        this.name = name;
        this.age = age;
    }

    @Override
    public String toString() {
    
    
        return "Person{" +
                "name='" + name + '\'' +
                ", age=" + age +
                '}';
    }

    public String getName() {
    
    
        return name;
    }

    public void setName(String name) {
    
    
        this.name = name;
    }

    public int getAge() {
    
    
        return age;
    }

    public void setAge(int age) {
    
    
        this.age = age;
    }
}

import java.util.Arrays;

/*
    Lambda表达式有参数有返回值的练习
    需求:
        使用数组存储多个Person对象
        对数组中的Person对象使用Arrays的sort方法通过年龄进行升序排序
 */
public class Demo01Arrays {
    
    
    public static void main(String[] args) {
    
    
        //使用数组存储多个Person对象
        Person[] arr = {
    
    
                new Person("柳岩",38),
                new Person("迪丽热巴",18),
                new Person("古力娜扎",19)
        };

        //对数组中的Person对象使用Arrays的sort方法通过年龄进行升序(前边-后边)排序
        /*Arrays.sort(arr, new Comparator<Person>() {
            @Override
            public int compare(Person o1, Person o2) {
                return o1.getAge()-o2.getAge();
            }
        });*/

        //使用Lambda表达式,简化匿名内部类
        Arrays.sort(arr,(Person o1, Person o2)->{
    
    
            return o1.getAge()-o2.getAge();
        });

        //优化省略Lambda
        Arrays.sort(arr,(o1, o2)->o1.getAge()-o2.getAge());

        //遍历数组
        for (Person p : arr) {
    
    
            System.out.println(p);
        }
    }
}

10.10 Lambda省略格式

可推导即可省略

Lambda强调的是“做什么”而不是“怎么做”,所以凡是可以根据上下文推导得知的信息,都可以省略。例如上例还可以使用Lambda的省略写法:

public static void main(String[] args) {
    
    
  	invokeCalc(120, 130, (a, b) -> a + b);
}

省略规则

在Lambda标准格式的基础上,使用省略写法的规则为:

  1. 小括号内参数的类型可以省略;
  2. 如果小括号内有且仅有一个参,则小括号可以省略;
  3. 如果大括号内有且仅有一个语句,则无论是否有返回值,都可以省略大括号、return关键字及语句分号。

备注:掌握这些省略规则后,请对应地回顾本章开头的多线程案例。

10.11 练习:使用Lambda省略格式

题目

仍然使用前文含有唯一makeFood抽象方法的厨子Cook接口,在下面的代码中,请使用Lambda的省略格式调用invokeCook方法,打印输出“吃饭啦!”字样:

public class Demo09InvokeCook {
    
    
    public static void main(String[] args) {
    
    
        // TODO 请在此使用Lambda【省略格式】调用invokeCook方法
    }

    private static void invokeCook(Cook cook) {
    
    
        cook.makeFood();
    }
}

解答

public static void main(String[] args) {
    
    
  	invokeCook(() -> System.out.println("吃饭啦!"));
}

10.12 Lambda的使用前提

Lambda的语法非常简洁,完全没有面向对象复杂的束缚。但是使用时有几个问题需要特别注意:

  1. 使用Lambda必须具有接口,且要求接口中有且仅有一个抽象方法
    无论是JDK内置的RunnableComparator接口还是自定义的接口,只有当接口中的抽象方法存在且唯一时,才可以使用Lambda。
  2. 使用Lambda必须具有上下文推断
    也就是方法的参数或局部变量类型必须为Lambda对应的接口类型,才能使用Lambda作为该接口的实例。

备注:有且仅有一个抽象方法的接口,称为“函数式接口”。

/*
    给定一个计算器Calculator接口,内含抽象方法calc可以将两个int数字相加得到和值
 */
public interface Calculator {
    
    
    //定义一个计算两个int整数和的方法并返回结果
    public abstract int calc(int a,int b);
}
/*
    Lambda表达式有参数有返回值的练习
    需求:
        给定一个计算器Calculator接口,内含抽象方法calc可以将两个int数字相加得到和值
        使用Lambda的标准格式调用invokeCalc方法,完成120和130的相加计算
 */
public class Demo01Calculator {
    
    
    public static void main(String[] args) {
    
    
        //调用invokeCalc方法,方法的参数是一个接口,可以使用匿名内部类
        invokeCalc(10, 20, new Calculator() {
    
    
            @Override
            public int calc(int a, int b) {
    
    
                return a+b;
            }
        });

        //使用Lambda表达式简化匿名内部类的书写
        invokeCalc(120,130,(int a,int b)->{
    
    
            return a + b;
        });

        //优化省略Lambda
        invokeCalc(120,130,(a,b)-> a + b);
    }

    /*
        定义一个方法
        参数传递两个int类型的整数
        参数传递Calculator接口
        方法内部调用Calculator中的方法calc计算两个整数的和
     */
    public static void invokeCalc(int a,int b,Calculator c){
    
    
        int sum = c.calc(a,b);
        System.out.println(sum);
    }
}
import java.util.ArrayList;

/*
    Lambda表达式:是可推导,可以省略
    凡是根据上下文推导出来的内容,都可以省略书写
    可以省略的内容:
        1.(参数列表):括号中参数列表的数据类型,可以省略不写
        2.(参数列表):括号中的参数如果只有一个,那么类型和()都可以省略
        3.{一些代码}:如果{}中的代码只有一行,无论是否有返回值,都可以省略({},return,分号)
            注意:要省略{},return,分号必须一起省略
 */
public class Demo01ArrayList {
    
    
    public static void main(String[] args) {
    
    
        //JDK1.7版本之前,创建集合对象必须把前后的泛型都写上
        ArrayList<String> list01 = new ArrayList<String>();

        //JDK1.7版本之后,=号后边的泛型可以省略,后边的泛型可以根据前边的泛型推导出来
        ArrayList<String> list02 = new ArrayList<>();
    }
}

猜你喜欢

转载自blog.csdn.net/Slience_me/article/details/113073999