数据可视化
matplotlib
matplotlib是python的一个绘图库。使用它可以很方便的绘制出版质量级别的图形。
matplotlib基本功能
-
基本绘图 (在二维平面坐标系中绘制连续的线)
-
设置线型、线宽和颜色
-
设置坐标轴范围
-
设置坐标刻度
-
设置坐标轴
-
图例
-
特殊点
-
备注
-
-
图形对象(图形窗口)
-
子图
-
刻度定位器
-
刻度网格线
-
半对数坐标
-
散点图
-
填充
-
条形图
-
饼图
-
等高线图
-
热成像图
-
三维曲面
-
简单动画
-
matplotlib基本功能详解
基本绘图
1)绘图核心API
案例: 绘制简单直线
import numpy as np
import matplotlib.pyplot as plt
# 绘制简单直线
x = np.array([1, 2, 3, 4, 5])
y = np.array([3, 6, 9, 12, 15])
# 绘制水平线、垂线
plt.axhline(y=6, ls=":", c="blue") # 添加水平直线
plt.axvline(x=4, ls="-", c="red") # 添加垂直直线
# 绘制多段垂线
plt.vlines([2, 3, 3.5], # 垂线的x坐标值
[10, 20, 30], # 每条垂线起始y坐标
[25, 35, 45]) # 每条垂线结束y坐标
plt.plot(x, y)
plt.show() # 显示图片,阻塞方法
2)设置线型、线宽
linestyle: 设置线型,常见取值有实线('-')、虚线('--')、点虚线('-.')、点线(':')
linewidth:线宽
color:颜色
颜色的英文单词:red, blue, green等
颜色的英文缩写:r, b, g
元组:(0.3, 0.4, 0.5) (r, g, b)
(0.3, 0.3, 0.6, 0.3) 最后一位是透明度
字符串:#aabbcc
alpha: 设置透明度(0~1之间)
案例:绘制正弦、余弦曲线,并设置线型、线宽、颜色、透明度
# 绘制正弦曲线
import numpy as np
import matplotlib.pyplot as plt
import math
x = np.arange(0, 2 * np.pi, 0.1) # 以0.1为单位,生成0~6的数据
print(x)
y1 = np.sin(x)
y2 = np.cos(x)
# 绘制图形
plt.plot(x, y1, label="sin", linewidth=2) # 实线,线宽2像素
plt.plot(x, y2, label="cos", linestyle="--", linewidth=4) # 虚线,线宽4像素
plt.xlabel("x") # x轴文字
plt.ylabel("y") # y轴文字
# 设置坐标轴范围
plt.xlim(0, 2 * math.pi)
plt.ylim(-1, 2)
plt.title("sin & cos") # 图标题
plt.legend() # 图例
plt.show()
3)设置坐标轴范围
语法:
#x_limt_min: <float> x轴范围最小值
#x_limit_max: <float> x轴范围最大值
plt.xlim(x_limt_min, x_limit_max)
#y_limt_min: <float> y轴范围最小值
#y_limit_max: <float> y轴范围最大值
plt.ylim(y_limt_min, y_limit_max)
4)设置坐标刻度
语法:
#x_val_list: x轴刻度值序列
#x_text_list: x轴刻度标签文本序列 [可选]
plt.xticks(x_val_list , x_text_list )
#y_val_list: y轴刻度值序列
#y_text_list: y轴刻度标签文本序列 [可选]
plt.yticks(y_val_list , y_text_list )
案例:绘制二次函数曲线
# 绘制二次函数曲线
import numpy as np
import matplotlib.pyplot as plt
import math
x = np.arange(-5, 5, 0.1) # 以0.1为单位,生成-5~5的数据
print(x)
y = x ** 2
# 绘制图形
plt.plot(x, y, label="$y = x ^ 2$",
linewidth=2, # 线宽2像素
color="red", # 颜色
alpha=0.5) # 透明度
plt.xlabel("x") # x轴文字
plt.ylabel("y") # y轴文字
# 设置坐标轴范围
plt.xlim(-10, 10)
plt.ylim(-1, 30)
# 设置刻度
x_tck = np.arange(-10, 10, 2)
x_txt = x_tck.astype("U")
plt.xticks(x_tck, x_txt)
y_tck = np.arange(-1, 30, 5)
y_txt = y_tck.astype("U")
plt.yticks(y_tck, y_txt)
plt.title("square") # 图标题
plt.legend(loc="upper right") # 图例 upper right, center
plt.show()
刻度文本的特殊语法 -- LaTex排版语法字符串
r'$x^n+y^n=z^n$', r'$\int\frac{1}{x} dx = \ln |x| + C$', r'$-\frac{\pi}{2}$'
5)设置坐标轴
坐标轴名:left / right / bottom / top
# 获取当前坐标轴字典,{'left':左轴,'right':右轴,'bottom':下轴,'top':上轴 }
ax = plt.gca()
# 获取其中某个坐标轴
axis = ax.spines['坐标轴名']
# 设置坐标轴的位置。 该方法需要传入2个元素的元组作为参数
# type: <str> 移动坐标轴的参照类型 一般为'data' (以数据的值作为移动参照值)
# val: 参照值
axis.set_position((type, val))
# 设置坐标轴的颜色
# color: <str> 颜色值字符串
axis.set_color(color)
案例:设置坐标轴格式
# 设置坐标轴
import matplotlib.pyplot as plt
ax = plt.gca()
axis_b = ax.spines['bottom'] # 获取下轴
axis_b.set_position(('data', 0)) # 设置下轴位置, 以数据作为参照值
axis_l = ax.spines['left'] # 获取左轴
axis_l.set_position(('data', 0)) # 设置左轴位置, 以数据作为参照值
ax.spines['top'].set_color('none') # 设置顶部轴无色
ax.spines['right'].set_color('none') # 设置右部轴无色
plt.show()
6)图例
显示两条曲线的图例,并测试loc属性。
# 再绘制曲线时定义曲线的label
# label: <关键字参数 str> 支持LaTex排版语法字符串
plt.plot(xarray, yarray ... label='', ...)
# 设置图例的位置
# loc: <关键字参数> 制定图例的显示位置 (若不设置loc,则显示默认位置)
# =============== =============
# Location String Location Code
# =============== =============
# 'best' 0
# 'upper right' 1
# 'upper left' 2
# 'lower left' 3
# 'lower right' 4
# 'right' 5
# 'center left' 6
# 'center right' 7
# 'lower center' 8
# 'upper center' 9
# 'center' 10
# =============== =============
plt.legend(loc='')
7)特殊点
语法:
# xarray: <序列> 所有需要标注点的水平坐标组成的序列
# yarray: <序列> 所有需要标注点的垂直坐标组成的序列
plt.scatter(xarray, yarray,
marker='', #点型 ~ matplotlib.markers
s='', #大小
edgecolor='', #边缘色
facecolor='', #填充色
zorder=3 #绘制图层编号 (编号越大,图层越靠上)
)
示例:在二次函数图像中添加特殊点
# 绘制特殊点
plt.scatter(x_tck, # x坐标数组
x_tck ** 2, # y坐标数组
marker="s", # 点形状 s:square
s=40, # 大小
facecolor="blue", # 填充色
zorder=3) # 图层编号
marker点型可参照:help(matplotlib.markers)
也可参照附录: matplotlib point样式
8)备注
语法:
# 在图表中为某个点添加备注。包含备注文本,备注箭头等图像的设置。
plt.annotate(
r'$\frac{\pi}{2}$', #备注中显示的文本内容
xycoords='data', #备注目标点所使用的坐标系(data表示数据坐标系)
xy=(x, y), #备注目标点的坐标
textcoords='offset points', #备注文本所使用的坐标系(offset points表示参照点的偏移坐标系)
xytext=(x, y), #备注文本的坐标
fontsize=14, #备注文本的字体大小
arrowprops=dict() #使用字典定义文本指向目标点的箭头样式
)
arrowprops参数使用字典定义指向目标点的箭头样式
#arrowprops字典参数的常用key
arrowprops=dict(
arrowstyle='', #定义箭头样式
connectionstyle='' #定义连接线的样式
)
箭头样式(arrowstyle)字符串如下
============ =============================================
Name Attrs
============ =============================================
'-' None
'->' head_length=0.4,head_width=0.2
'-[' widthB=1.0,lengthB=0.2,angleB=None
'|-|' widthA=1.0,widthB=1.0
'-|>' head_length=0.4,head_width=0.2
'<-' head_length=0.4,head_width=0.2
'<->' head_length=0.4,head_width=0.2
'<|-' head_length=0.4,head_width=0.2
'<|-|>' head_length=0.4,head_width=0.2
'fancy' head_length=0.4,head_width=0.4,tail_width=0.4
'simple' head_length=0.5,head_width=0.5,tail_width=0.2
'wedge' tail_width=0.3,shrink_factor=0.5
============ =============================================
连接线样式(connectionstyle)字符串如下
============ =============================================
Name Attrs
============ =============================================
'angle' angleA=90,angleB=0,rad=0.0
'angle3' angleA=90,angleB=0`
'arc' angleA=0,angleB=0,armA=None,armB=None,rad=0.0
'arc3' rad=0.0
'bar' armA=0.0,armB=0.0,fraction=0.3,angle=None
============ =============================================
示例:在二次函数图像中添加备注
# 设置备注
plt.annotate(
r'$y = x ^ 2$', #备注中显示的文本内容
xycoords='data', #备注目标点所使用的坐标系(data表示数据坐标系)
xy=(4, 16), #备注目标点的坐标 (4,16)
textcoords='offset points', #备注文本所使用的坐标系(offset points表示参照点的偏移坐标系)
xytext=(20, 30), #备注文本的坐标
fontsize=14, #备注文本的字体大小
arrowprops=dict(
arrowstyle="->", connectionstyle="angle3"
) #使用字典定义文本指向目标点的箭头样式
)
####