给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace" ,它的长度为 3 。
示例 2:
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。
示例 3:
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。
==============================================================================================================================================================================================
分析:
解题思路
求两个数组或者字符串的最长公共子序列问题,肯定是要用动态规划的。下面的题解并不难,你肯定能看懂。
首先,区分两个概念:子序列可以是不连续的;子数组(子字符串)需要是连续的;
另外,动态规划也是有套路的:单个数组或者字符串要用动态规划时,可以把动态规划 dp[i] 定义为 nums[0:i] 中想要求的结果;当两个数组或者字符串要用动态规划时,可以把动态规划定义成两维的 dp[i][j] ,其含义是在 A[0:i] 与 B[0:j] 之间匹配得到的想要的结果。1. 状态定义
比如对于本题而言,可以定义 dp[i][j] 表示 text1[0:i-1] 和 text2[0:j-1] 的最长公共子序列。 (注:text1[0:i-1] 表示的是 text1 的 第 0 个元素到第 i - 1 个元素,两端都包含),之所以 dp[i][j] 的定义不是 text1[0:i] 和 text2[0:j] ,是为了方便当 i = 0 或者 j = 0 的时候,dp[i][j]表示的为空字符串和另外一个字符串的匹配,这样 dp[i][j] 可以初始化为 0.
2. 状态转移方程
知道状态定义之后,我们开始写状态转移方程。
当 text1[i - 1] == text2[j - 1] 时,说明两个子字符串的最后一位相等,所以最长公共子序列又增加了 1,所以 dp[i][j] = dp[i - 1][j - 1] + 1;举个例子,比如对于 ac 和 bc 而言,他们的最长公共子序列的长度等于 a 和 b 的最长公共子序列长度 0 + 1 = 1。
当 text1[i - 1] != text2[j - 1] 时,说明两个子字符串的最后一位不相等,那么此时的状态 dp[i][j] 应该是 dp[i - 1][j] 和 dp[i][j - 1] 的最大值。举个例子,比如对于 ace 和 bc 而言,他们的最长公共子序列的长度等于 ① ace 和 b 的最长公共子序列长度0 与 ② ac 和 bc 的最长公共子序列长度1 的最大值,即 1。综上状态转移方程为:
dp[i][j] = dp[i - 1][j - 1] + 1dp[i][j]=dp[i−1][j−1]+1, 当 text1[i - 1] == text2[j - 1];text1[i−1]==text2[j−1];
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])dp[i][j]=max(dp[i−1][j],dp[i][j−1]), 当 text1[i - 1] != text2[j - 1]text1[i−1]!=text2[j−1]3. 状态的初始化
初始化就是要看当 i = 0 与 j = 0 时, dp[i][j] 应该取值为多少。
当 i = 0 时,dp[0][j] 表示的是 text1text1 中取空字符串 跟 text2text2 的最长公共子序列,结果肯定为 0.
当 j = 0 时,dp[i][0] 表示的是 text2text2 中取空字符串 跟 text1text1 的最长公共子序列,结果肯定为 0.
综上,当 i = 0 或者 j = 0 时,dp[i][j] 初始化为 0.4. 遍历方向与范围
由于 dp[i][j] 依赖与 dp[i - 1][j - 1] , dp[i - 1][j], dp[i][j - 1],所以 ii 和 jj 的遍历顺序肯定是从小到大的。
另外,由于当 ii 和 jj 取值为 0 的时候,dp[i][j] = 0,而 dp 数组本身初始化就是为 0,所以,直接让 ii 和 jj 从 1 开始遍历。遍历的结束应该是字符串的长度为 len(text1)len(text1) 和 len(text2)len(text2)。5. 最终返回结果
由于 dp[i][j] 的含义是 text1[0:i-1] 和 text2[0:j-1] 的最长公共子序列。我们最终希望求的是 text1 和 text2 的最长公共子序列。所以需要返回的结果是 i = len(text1) 并且 j = len(text2) 时的 dp[len(text1)][len(text2)]。
代码
class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
//两个字符串的大小
const int M = text1.size();
const int N = text2.size();
//vector<int>(N + 1,0)定义一个vector容器,是N+1个0
//vector<vector<int>> dp(M + 1,vector<int>(N + 1,0)) 定义一个容器,是M+1个vector<int>(N + 1,0)
vector<vector<int>> dp(M + 1,vector<int>(N + 1,0));
for(int i = 1; i <= M; i++)
{
for(int j = 1;j <= N; j++)
{
if(text1[i-1] == text2[j-1])
{
dp[i][j] = dp[i-1][j-1] + 1;
}
else
{
dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
}
}
}
return dp[M][N];
}
};
链接:https://leetcode-cn.com/problems/longest-common-subsequence