基本概念
camshift("continuously adaptive mean-shift"的缩写),即连续自适应的 算法。其基本思想是对视频序列的所有图像帧都作MeanShift运算,并将上一帧的结果(即搜索窗口的中心位置和窗口大小)作为下一帧MeanShift算法的搜索窗口的初始值,如此迭代下去。简单点说,meanShift是针对单张图片寻找最优迭代结果,而camShift则是针对视频序列来处理,并对该序列中的每一帧图片都调用meanShift来寻找最优迭代结果。正是由于camShift针对一个视频序列进行处理,从而保证其可以不断调整窗口的大小,如此一来,当目标的大小发生变化的时候,该算法就可以自适应地调整目标区域继续跟踪。算法基本步骤:
- 初始化搜索窗
- 计算搜索窗区域的颜色概率分布(反向投影)
- 运行mean-shift算法,得到搜索窗新的大小和位置。
- 在下一帧视频图像中用步骤3中的值重新初始化搜索窗的大小和位置,继续从步骤2执行。
示例演示
在OpenCV自带的camShift的例子当中,是通过计算目标在HSV空间下的H分量直方图,通过直方图反向投影得到目标像素的概率分布,然后通过调用OpenCV的CAMSHIFT算法,自动跟踪并调整目标窗口的中心位置与大小。该算法对于简单背景下的单目标跟踪效果较好,但如果被跟踪目标与背景颜色或周围其它目标颜色比较接近,则跟踪效果较差。另外,由于采用颜色特征,所以它对被跟踪目标的形状变化有一定的抵抗能力。完整代码
#include <iostream>
#include <opencv2/opencv.hpp>
using namespace cv;
using namespace std;
int main(int argc, char **argv)
{
const string about =
"This sample demonstrates the camshift algorithm.\n"
"The example file can be downloaded from:\n"
" https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4";
const string keys =
"{ h help | | print this help message }"
"{ @image |<none>| path to image file }";
CommandLineParser parser(argc, argv, keys);
parser.about(about);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
//string filename = parser.get<string>("@image");
string filename = "D:\\TestData\\slow_traffic_small.mp4";
if (!parser.check())
{
parser.printErrors();
return 0;
}
VideoCapture capture(filename);
if (!capture.isOpened()) {
//error in opening the video input
cerr << "Unable to open file!" << endl;
return 0;
}
Mat frame, roi, hsv_roi, mask;
// take first frame of the video
capture >> frame;
// setup initial location of window
Rect track_window(300, 200, 100, 50); // simply hardcoded the values
// set up the ROI for tracking
roi = frame(track_window);
cvtColor(roi, hsv_roi, COLOR_BGR2HSV);
inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask);
float range_[] = {
0, 180 };
const float* range[] = {
range_ };
Mat roi_hist;
int histSize[] = {
180 };
int channels[] = {
0 };
calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range);
normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX);
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1);
while (true) {
Mat hsv, dst;
capture >> frame;
if (frame.empty())
break;
cvtColor(frame, hsv, COLOR_BGR2HSV);
calcBackProject(&hsv, 1, channels, roi_hist, dst, range);
// apply camshift to get the new location
RotatedRect rot_rect = CamShift(dst, track_window, term_crit);
// Draw it on image
Point2f points[4];
rot_rect.points(points);
for (int i = 0; i < 4; i++)
line(frame, points[i], points[(i + 1) % 4], 255, 2);
imshow("img2", frame);
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27)
break;
}
}
运行结果
参考资料
- 学习OpenCV(中文版)[M]