kernel和filter在CNN中的区别以及卷积核与卷积层的关系

  1. kernel和filter这两个概念在CNN中的区别
    根据参考文献可知
    keras中,
    当channels=1时,那么filter就是kernel
    当channels>1时,那么filter就是指一堆kernel
    其中channels表示卷积核的数量,一般为2的指数次方
    So this is where a key distinction between terms comes in handy: whereas in the 1 channel case, where the term filter and kernel are interchangeable, in the general case,they’re actually pretty different.
    Each filter actually happens to be a collection of kernels, with there being one kernel for every single input channel to the layer, and each kernel being unique.

  2. 卷积核与卷积层的关系(如图)

在这里插入图片描述
上图表示:channels=16,表示这一层有16个卷积核,一个卷积核:7x7的矩阵。

  1. 神经网络怎么处理图片呢?
    一张图片如果是RGB形式,一个张量存放:R矩阵和G矩阵和B矩阵,然后每种矩阵都与其中一个卷积核进行卷积运算,以此类推,遍历所有的卷积核.

  2. 复习下张量:
    一个矩阵是一个2D张量,也就是一个数组,数组里面的每个元素是一个向量
    一堆矩阵是一个3D张量,也就是一个数组,数组里面的每个元素是一个矩阵

  3. 参考文献:
    [1]https://stackoverflow.com/questions/47240348/what-is-the-meaning-of-the-none-in-model-summary-of-keras
    [2]https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-learning-1f6f42faee1

猜你喜欢

转载自blog.csdn.net/qq_41731507/article/details/113662697