pytorch入门(二)——实例练习

内容来自https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

下面通过自带案例来介绍pytorch的主要概念。
作为pytorch的核心,其特点主要包括:

  • n维张量,类似于numpy,但可在gpu上进行计算
  • 构造、训练神经网络时自动求导

我们将使用一个全连接ReLu网络作为示例。该网络具有一个隐藏层,使用梯度下降法训练,目标函数是使网络数据距离真实值的欧氏距离最小。

张量 tensor

预备知识 numpy

在介绍PyTorch前,我们先用numpy来完成网络结构。
numpy提供了n维数组的对象,并且提供了很多操作数组的函数方法。numpy是一个通用的科学计算框架,并不具体涉及图形计算、深度学习、梯度计算上。但我们很容易使用numpy来构建一个两层的网络,手动实现网络中的向前、向后传递路径。

# -*- coding: utf-8 -*-
import numpy as np

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random input and output data
x = np.random.randn(N, D_in)
y = np.random.randn(N, D_out)

# Randomly initialize weights
w1 = np.random.randn(D_in, H)
w2 = np.random.randn(H, D_out)

learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
    h = x.dot(w1)
    h_relu = np.maximum(h, 0)
    y_pred = h_relu.dot(w2)

    # Compute and print loss
    loss = np.square(y_pred - y).sum()
    print(t, loss)

    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    #N x D_in转置,点乘,N x D_out,得到D_in x D_out维度的矩阵
    grad_w2 = h_relu.T.dot(grad_y_pred)
    #N x D_out,点乘,H x D_out转置,得到N x H维度的矩阵
    grad_h_relu = grad_y_pred.dot(w2.T)
    grad_h = grad_h_relu.copy()
    grad_h[h < 0] = 0
    grad_w1 = x.T.dot(grad_h)

    # Update weights
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

Pytorch:张量tensor

numpy是一个优秀的框架,但是它不支持GPU加速计算。对于现代的深度学习网络结构,而GPU通常能够将计算速度提升50倍以上,所以numpy难以满足现在深度学习的计算需求。
这里我们引入pytorch中的张量概念。pytorch中的张量在理论上等价于numpy数组:张量(tensor)是一个n维的数组,而且pytorch提供很多函数支持张量运算。pytorch不仅能够作为通用的工具进行科学计算,还能够方便的对图像、梯度进行计算。
与numpy数组不同的是,pytorch张量能够利用GPU加速数值计算。在GPU上操作pytorch张量时候,需要简单的进行数据类型转换。
现在我们使用pytorch张量来构建两层的网络。与上面的numpy例子一样,我们需要手动构建网络上的向前、向后传递路径。

# -*- coding: utf-8 -*-

import torch


dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random input and output data
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)

# Randomly initialize weights
w1 = torch.randn(D_in, H, device=device, dtype=dtype)
w2 = torch.randn(H, D_out, device=device, dtype=dtype)

learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)

    # Compute and print loss
    loss = (y_pred - y).pow(2).sum().item()
    print(t, loss)

    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    #pytorch中mm表示外积
    grad_w1 = x.t().mm(grad_h)

    # Update weights using gradient descent
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2

自动梯度 Autograd

PyTorch: 张量和自动梯度 Tensors and autograd

在上述例子中,我们需要手动构建神经网络中前向、后向传播路径,这在两层的网络中并不是一件困难的事情,但在大型复杂的网络中将会是一项繁琐的任务。
幸运的是,我们可以使用自动求导功能来实现神经网络中的反向传递过程。pytorch中的autograd包提供了该项功能。在使用自动梯度时,网络的前向通道定义一个计算图(computational graph),图中的节点(node)是Tensors,边(edge)是根据输入Tensor来产生输出Tensor的函数。这个图的反向传播将会允许你很轻松地去计算梯度。
这些听起来很复杂,但实际操作起来很简单。每个张量代表计算图中的一个节点。例如x是一个张量,在x.requires_grad = True的前提下,x.grad就是一个表示x对应某数值时的梯度值。
下面我们使用PyTorch 的张量和自动梯度来构建我们的两层的神经网络,我们不再需要手动构建网络的反向通道。

# -*- coding: utf-8 -*-
import torch

dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold input and outputs.
# Setting requires_grad=False indicates that we do not need to compute gradients
# with respect to these Tensors during the backward pass.
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)

# Create random Tensors for weights.
# Setting requires_grad=True indicates that we want to compute gradients with
# respect to these Tensors during the backward pass.
w1 = torch.randn(D_in, H, device=device, dtype=dtype, requires_grad=True)
w2 = torch.randn(H, D_out, device=device, dtype=dtype, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y using operations on Tensors; these
    # are exactly the same operations we used to compute the forward pass using
    # Tensors, but we do not need to keep references to intermediate values since
    # we are not implementing the backward pass by hand.
    #torch中的clamp函数用于将张量中的元素夹紧到指定区间,来实现ReLu激活函数
    y_pred = x.mm(w1).clamp(min=0).mm(w2)

    # Compute and print loss using operations on Tensors.
    # Now loss is a Tensor of shape (1,)
    # loss.item() gets the a scalar value held in the loss.
    loss = (y_pred - y).pow(2).sum()
    print(t, loss.item())

    # Use autograd to compute the backward pass. This call will compute the
    # gradient of loss with respect to all Tensors with requires_grad=True.
    # After this call w1.grad and w2.grad will be Tensors holding the gradient
    # of the loss with respect to w1 and w2 respectively.
    loss.backward()

    # Manually update weights using gradient descent. Wrap in torch.no_grad()
    # because weights have requires_grad=True, but we don't need to track this
    # in autograd.
    # An alternative way is to operate on weight.data and weight.grad.data.
    # Recall that tensor.data gives a tensor that shares the storage with
    # tensor, but doesn't track history.
    # You can also use torch.optim.SGD to achieve this.
    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad

        # Manually zero the gradients after updating weights
        w1.grad.zero_()
        w2.grad.zero_()

PyTorch: 定义新的自动梯度函数 Defining new autograd functions

在底层,每一个原始的自动梯度运算符实际上是两个操作张量运算的函数。其中,forward函数依据输入张量获得的输出张量;而backward函数接收输出张量相对于某个标量值的梯度,并且计算输入张量相对于该相同标量值的梯度。
在PyTorch中,我们可以很容易地定义自己的自动梯度运算符:通过定义torch.autograd.Function的子类,然后构建相应的forwardbackward函数。我们可以在实例中,像调用函数一样使用自定义的自动梯度函数。
在这个例子中,我们自定义自动梯度函数来执行ReLU非线性,然后使用它构建的两层网络。

# -*- coding: utf-8 -*-
import torch


class MyReLU(torch.autograd.Function):
    """
    We can implement our own custom autograd Functions by subclassing
    torch.autograd.Function and implementing the forward and backward passes
    which operate on Tensors.
    """

    @staticmethod
    def forward(ctx, input):
        """
        In the forward pass we receive a Tensor containing the input and return
        a Tensor containing the output. ctx is a context object that can be used
        to stash information for backward computation. You can cache arbitrary
        objects for use in the backward pass using the ctx.save_for_backward method.
        """
        ctx.save_for_backward(input)
        return input.clamp(min=0)

    @staticmethod
    def backward(ctx, grad_output):
        """
        In the backward pass we receive a Tensor containing the gradient of the loss
        with respect to the output, and we need to compute the gradient of the loss
        with respect to the input.
        """
        input, = ctx.saved_tensors
        grad_input = grad_output.clone()
        grad_input[input < 0] = 0
        return grad_input


dtype = torch.float
device = torch.device("cpu")
# device = torch.device("cuda:0") # Uncomment this to run on GPU

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold input and outputs.
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)

# Create random Tensors for weights.
w1 = torch.randn(D_in, H, device=device, dtype=dtype, requires_grad=True)
w2 = torch.randn(H, D_out, device=device, dtype=dtype, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    # To apply our Function, we use Function.apply method. We alias this as 'relu'.
    relu = MyReLU.apply

    # Forward pass: compute predicted y using operations; we compute
    # ReLU using our custom autograd operation.
    y_pred = relu(x.mm(w1)).mm(w2)

    # Compute and print loss
    loss = (y_pred - y).pow(2).sum()
    print(t, loss.item())

    # Use autograd to compute the backward pass.
    loss.backward()

    # Update weights using gradient descent
    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad

        # Manually zero the gradients after updating weights
        w1.grad.zero_()
        w2.grad.zero_()

TensorFlow: 静态图 Static Graphs

PyTorch自动梯度看起来非常像TensorFlow:在两个框架中,我们都定义计算图,使用自动微分来计算梯度。两者最大的不同就是TensorFlow的计算图是静态的,而PyTorch使用动态的计算图。
在TensorFlow中,我们定义计算图一次,然后重复执行这个相同的图,可能会提供不同的输入数据。而在PyTorch中,每一个前向通道定义一个新的计算图。
静态图的好处在于你可以预先对图进行优化。例如,一个框架可能要融合一些图运算来提升效率,或者产生一个策略来将图分布到多个GPU或机器上。如果你重复使用相同的图,前期优化的消耗就会被分摊开,因为相同的图在多次重复运行。
静态图和动态图的一个不同之处是控制流。对于一些模型,我们希望对每个数据点执行不同的计算。例如,一个递归神经网络可能对于每个数据点执行不同的时间步数,这个展开(unrolling)可以作为一个循环来实现。对于一个静态图,循环结构要作为图的一部分。因此,TensorFlow提供了运算符(例如tf .scan)来把循环嵌入到图当中。对于动态图来说,情况更加简单:既然我们为每个例子即时创建图,我们可以使用正常的解释流控制来为每个输入执行不同的计算。
为了与上面的PyTorch自动梯度实例做对比,我们使用TensorFlow来拟合一个简单的2层网络。

# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np

# First we set up the computational graph:

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create placeholders for the input and target data; these will be filled
# with real data when we execute the graph.
x = tf.placeholder(tf.float32, shape=(None, D_in))
y = tf.placeholder(tf.float32, shape=(None, D_out))

# Create Variables for the weights and initialize them with random data.
# A TensorFlow Variable persists its value across executions of the graph.
w1 = tf.Variable(tf.random_normal((D_in, H)))
w2 = tf.Variable(tf.random_normal((H, D_out)))

# Forward pass: Compute the predicted y using operations on TensorFlow Tensors.
# Note that this code does not actually perform any numeric operations; it
# merely sets up the computational graph that we will later execute.
h = tf.matmul(x, w1)
h_relu = tf.maximum(h, tf.zeros(1))
y_pred = tf.matmul(h_relu, w2)

# Compute loss using operations on TensorFlow Tensors
loss = tf.reduce_sum((y - y_pred) ** 2.0)

# Compute gradient of the loss with respect to w1 and w2.
grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

# Update the weights using gradient descent. To actually update the weights
# we need to evaluate new_w1 and new_w2 when executing the graph. Note that
# in TensorFlow the the act of updating the value of the weights is part of
# the computational graph; in PyTorch this happens outside the computational
# graph.
learning_rate = 1e-6
new_w1 = w1.assign(w1 - learning_rate * grad_w1)
new_w2 = w2.assign(w2 - learning_rate * grad_w2)

# Now we have built our computational graph, so we enter a TensorFlow session to
# actually execute the graph.
with tf.Session() as sess:
    # Run the graph once to initialize the Variables w1 and w2.
    sess.run(tf.global_variables_initializer())

    # Create numpy arrays holding the actual data for the inputs x and targets
    # y
    x_value = np.random.randn(N, D_in)
    y_value = np.random.randn(N, D_out)
    for _ in range(500):
        # Execute the graph many times. Each time it executes we want to bind
        # x_value to x and y_value to y, specified with the feed_dict argument.
        # Each time we execute the graph we want to compute the values for loss,
        # new_w1, and new_w2; the values of these Tensors are returned as numpy
        # arrays.
        loss_value, _, _ = sess.run([loss, new_w1, new_w2],
                                    feed_dict={x: x_value, y: y_value})
        print(loss_value)

nn模块 nn Module

PyTorch:nn

计算图自动梯度是功能很强大的模板,可以自定义复杂的运算操作;但是对于大型神经网络,原始的自动梯度就显得过于低级了。
当构建神经网络时,我们往往在中进行计算,这些层的特点是含有可学习参数(在学习过程中优化的对象)。
在TensorFlow中,像KerasTensorFlow-SlimTFLearn这些包,提供了相对原始计算图更抽象的方法,对构建神经网络大有帮助。
在PyTorch中,nn提供相同的功能。nn包定义了一系列模块,相当于神经网络中的层。一个模块能够接收输入张量,并算得出输出张量,并保持中间状态,例如包含了可学习参数的张量。nn包同样定义了一系列实用的损失函数,广泛用于神经网络训练。
下面的示例中,我们使用nn包来构建两层网络。

# -*- coding: utf-8 -*-
import torch

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold inputs and outputs
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

# Use the nn package to define our model as a sequence of layers. nn.Sequential
# is a Module which contains other Modules, and applies them in sequence to
# produce its output. Each Linear Module computes output from input using a
# linear function, and holds internal Tensors for its weight and bias.
#[linear的介绍](https://blog.csdn.net/u012936765/article/details/52671156)
model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out),
)

# The nn package also contains definitions of popular loss functions; in this
# case we will use Mean Squared Error (MSE) as our loss function.
loss_fn = torch.nn.MSELoss(reduction='sum')

learning_rate = 1e-4
for t in range(500):
    # Forward pass: compute predicted y by passing x to the model. Module objects
    # override the __call__ operator so you can call them like functions. When
    # doing so you pass a Tensor of input data to the Module and it produces
    # a Tensor of output data.
    y_pred = model(x)

    # Compute and print loss. We pass Tensors containing the predicted and true
    # values of y, and the loss function returns a Tensor containing the
    # loss.
    loss = loss_fn(y_pred, y)
    print(t, loss.item())

    # Zero the gradients before running the backward pass.
    model.zero_grad()

    # Backward pass: compute gradient of the loss with respect to all the learnable
    # parameters of the model. Internally, the parameters of each Module are stored
    # in Tensors with requires_grad=True, so this call will compute gradients for
    # all learnable parameters in the model.
    loss.backward()

    # Update the weights using gradient descent. Each parameter is a Tensor, so
    # we can access its gradients like we did before.
    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

PyTorch: optim

目前,我们通过手动操作含有可学习参数的张量来更新模型的权重。对于简单的优化算法(例如随机梯度下降法SGD)来说这并不难,但实际上我们经常用更复杂的优化器来训练模型,例如AdaGrad、RMSProp、Adam等等。
PyTorch的optim包将优化求解算法进行抽象,提供了通用优化算法的实现方法。
下面的例子中,我们使用nn包来重构之前的模型,但是这次使用optim包中的Adam算法来训优化模型。

# -*- coding: utf-8 -*-
import torch

# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold inputs and outputs
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

# Use the nn package to define our model and loss function.
model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out),
)
loss_fn = torch.nn.MSELoss(reduction='sum')

# Use the optim package to define an Optimizer that will update the weights of
# the model for us. Here we will use Adam; the optim package contains many other
# optimization algoriths. The first argument to the Adam constructor tells the
# optimizer which Tensors it should update.
learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for t in range(500):
    # Forward pass: compute predicted y by passing x to the model.
    y_pred = model(x)

    # Compute and print loss.
    loss = loss_fn(y_pred, y)
    print(t, loss.item())

    # Before the backward pass, use the optimizer object to zero all of the
    # gradients for the variables it will update (which are the learnable
    # weights of the model). This is because by default, gradients are
    # accumulated in buffers( i.e, not overwritten) whenever .backward()
    # is called. Checkout docs of torch.autograd.backward for more details.
    optimizer.zero_grad()

    # Backward pass: compute gradient of the loss with respect to model
    # parameters
    loss.backward()

    # Calling the step function on an Optimizer makes an update to its
    # parameters
    optimizer.step()

PyTorch:Custom nn Modules

有时候,我们需要自定义比现有模块更加复杂的模型。我们可以通过nn.Module模块派生出的子类来定义自己的网络模块,定义一个forward来实现接收输入张量,通过其他模块或自动梯度方法得到输出张量。
下面的例子中,我们将通过自定义子类模块来构建两层网络。

# -*- coding: utf-8 -*-
import torch


class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        """
        In the constructor we instantiate two nn.Linear modules and assign them as
        member variables.
        """
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)

    def forward(self, x):
        """
        In the forward function we accept a Tensor of input data and we must return
        a Tensor of output data. We can use Modules defined in the constructor as
        well as arbitrary operators on Tensors.
        """
        h_relu = self.linear1(x).clamp(min=0)
        y_pred = self.linear2(h_relu)
        return y_pred


# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold inputs and outputs
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

# Construct our model by instantiating the class defined above
model = TwoLayerNet(D_in, H, D_out)

# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters of the two
# nn.Linear modules which are members of the model.
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    # Forward pass: Compute predicted y by passing x to the model
    y_pred = model(x)

    # Compute and print loss
    loss = criterion(y_pred, y)
    print(t, loss.item())

    # Zero gradients, perform a backward pass, and update the weights.
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

PyTorch:Control Flow + Weight Sharing

我们构建一个另类的模型来作为动态图和权重共享的案例:一个全连接的ReLU网络,使用1-4的随机数连接多个隐藏层的每个前向通道, 并多次使用相同的权重来计算深层的隐藏层。
在这个模型中,我们使用python的流控制来实现循环。在定义前向传播通道时,通过多次使用同样的模块来实现权重共享。
示例如下:

# -*- coding: utf-8 -*-
import random
import torch


class DynamicNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        """
        In the constructor we construct three nn.Linear instances that we will use
        in the forward pass.
        """
        super(DynamicNet, self).__init__()
        self.input_linear = torch.nn.Linear(D_in, H)
        self.middle_linear = torch.nn.Linear(H, H)
        self.output_linear = torch.nn.Linear(H, D_out)

    def forward(self, x):
        """
        For the forward pass of the model, we randomly choose either 0, 1, 2, or 3
        and reuse the middle_linear Module that many times to compute hidden layer
        representations.

        Since each forward pass builds a dynamic computation graph, we can use normal
        Python control-flow operators like loops or conditional statements when
        defining the forward pass of the model.

        Here we also see that it is perfectly safe to reuse the same Module many
        times when defining a computational graph. This is a big improvement from Lua
        Torch, where each Module could be used only once.
        """
        h_relu = self.input_linear(x).clamp(min=0)
        for _ in range(random.randint(0, 3)):
            h_relu = self.middle_linear(h_relu).clamp(min=0)
        y_pred = self.output_linear(h_relu)
        return y_pred


# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

# Create random Tensors to hold inputs and outputs
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

# Construct our model by instantiating the class defined above
model = DynamicNet(D_in, H, D_out)

# Construct our loss function and an Optimizer. Training this strange model with
# vanilla stochastic gradient descent is tough, so we use momentum
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(model.parameters(), lr=1e-4, momentum=0.9)
for t in range(500):
    # Forward pass: Compute predicted y by passing x to the model
    y_pred = model(x)

    # Compute and print loss
    loss = criterion(y_pred, y)
    print(t, loss.item())

    # Zero gradients, perform a backward pass, and update the weights.
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

猜你喜欢

转载自blog.csdn.net/qq_33604695/article/details/93657674