import torch
from.import _functional as F
from.optimizer import Optimizer
classAdam(Optimizer):r"""Implements Adam algorithm.
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
The implementation of the L2 penalty follows changes proposed in
`Decoupled Weight Decay Regularization`_.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _Decoupled Weight Decay Regularization:
https://arxiv.org/abs/1711.05101
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""def__init__(self, params, lr=1e-3, betas=(0.9,0.999), eps=1e-8,
weight_decay=0, amsgrad=False):ifnot0.0<= lr:raise ValueError("Invalid learning rate: {}".format(lr))ifnot0.0<= eps:raise ValueError("Invalid epsilon value: {}".format(eps))ifnot0.0<= betas[0]<1.0:raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))ifnot0.0<= betas[1]<1.0:raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))ifnot0.0<= weight_decay:raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults =dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad)super(Adam, self).__init__(params, defaults)def__setstate__(self, state):super(Adam, self).__setstate__(state)for group in self.param_groups:
group.setdefault('amsgrad',False)[docs] @torch.no_grad()defstep(self, closure=None):"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss =Noneif closure isnotNone:with torch.enable_grad():
loss = closure()for group in self.param_groups:
params_with_grad =[]
grads =[]
exp_avgs =[]
exp_avg_sqs =[]
max_exp_avg_sqs =[]
state_steps =[]
beta1, beta2 = group['betas']for p in group['params']:if p.grad isnotNone:
params_with_grad.append(p)if p.grad.is_sparse:raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
grads.append(p.grad)
state = self.state[p]# Lazy state initializationiflen(state)==0:
state['step']=0# Exponential moving average of gradient values
state['exp_avg']= torch.zeros_like(p, memory_format=torch.preserve_format)# Exponential moving average of squared gradient values
state['exp_avg_sq']= torch.zeros_like(p, memory_format=torch.preserve_format)if group['amsgrad']:# Maintains max of all exp. moving avg. of sq. grad. values
state['max_exp_avg_sq']= torch.zeros_like(p, memory_format=torch.preserve_format)
exp_avgs.append(state['exp_avg'])
exp_avg_sqs.append(state['exp_avg_sq'])if group['amsgrad']:
max_exp_avg_sqs.append(state['max_exp_avg_sq'])# update the steps for each param group update
state['step']+=1# record the step after step update
state_steps.append(state['step'])
F.adam(params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
amsgrad=group['amsgrad'],
beta1=beta1,
beta2=beta2,
lr=group['lr'],
weight_decay=group['weight_decay'],
eps=group['eps'])return loss