"""
xml2txt scrpt by @@@@@@dapeng
将此文件放置在yolov5根目录下即可
"""
import xml.etree.ElementTree as ET
import os
import shutil
import random
xml_file_path = 'data/annotations/'
images_file_path = 'data/source_images/'
classes = ["uniform", "non_uniform"]
train_percent = 0.7
val_percent = 0.15
test_percent = 0.15
if not os.path.exists('data/temp_labels/'):
os.makedirs('data/temp_labels/')
txt_file_path = 'data/temp_labels/'
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
def convert_annotations(image_name):
in_file = open(xml_file_path + image_name + '.xml')
out_file = open(txt_file_path + image_name + '.txt', 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
cls = obj.find('name').text
if cls not in classes == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text),
float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
total_xml = os.listdir(xml_file_path)
num_xml = len(total_xml)
for i in range(num_xml):
name = total_xml[i][:-4]
convert_annotations(name)
def create_dir():
if not os.path.exists('data/images/'):
os.makedirs('data/images/')
if not os.path.exists('data/labels/'):
os.makedirs('data/labels/')
if not os.path.exists('data/images/train/'):
os.makedirs('data/images/train')
if not os.path.exists('data/images/val/'):
os.makedirs('data/images/val/')
if not os.path.exists('data/images/test/'):
os.makedirs('data/images/test/')
if not os.path.exists('data/labels/train/'):
os.makedirs('data/labels/train/')
if not os.path.exists('data/labels/val/'):
os.makedirs('data/labels/val/')
if not os.path.exists('data/labels/test/'):
os.makedirs('data/labels/test/')
return
create_dir()
total_txt = os.listdir(txt_file_path)
num_txt = len(total_txt)
list_all_txt = range(num_txt)
num_train = int(num_txt * train_percent)
num_val = int(num_txt * val_percent)
num_test = num_txt - num_train - num_val
train = random.sample(list_all_txt, num_train)
val_test = [i for i in list_all_txt if not i in train]
val = random.sample(val_test, num_val)
print("训练集数目:{}, 验证集数目:{},测试集数目:{}".format(len(train), len(val), len(val_test) - len(val)))
for i in list_all_txt:
name = total_txt[i][:-4]
srcImage = images_file_path + name + '.jpg'
srcLabel = txt_file_path + name + '.txt'
if i in train:
dst_train_Image = 'data/images/train/' + name + '.jpg'
dst_train_Label = 'data/labels/train/' + name + '.txt'
shutil.copyfile(srcImage, dst_train_Image)
shutil.copyfile(srcLabel, dst_train_Label)
elif i in val:
dst_val_Image = 'data/images/val/' + name + '.jpg'
dst_val_Label = 'data/labels/val/' + name + '.txt'
shutil.copyfile(srcImage, dst_val_Image)
shutil.copyfile(srcLabel, dst_val_Label)
else:
dst_test_Image = 'data/images/test/' + name + '.jpg'
dst_test_Label = 'data/labels/test/' + name + '.txt'
shutil.copyfile(srcImage, dst_test_Image)
shutil.copyfile(srcLabel, dst_test_Label)
shutil.rmtree(txt_file_path)