MySQL索引优化分析系列之四
查询优化
一、单表使用索引及常见索引失效
案例(索引失效)
- 全值匹配我最爱
系统中经常出现的sql语句如下:
EXPLAIN SELECT SQL_NO_CACHE * FROM emp WHERE emp.age=30
EXPLAIN SELECT SQL_NO_CACHE * FROM emp WHERE emp.age=30 and deptid=4
EXPLAIN SELECT SQL_NO_CACHE * FROM emp WHERE emp.age=30 and deptid=4 AND emp.name = 'abcd'
索引应该如何建立 ?
CREATE INDEX idx_age_deptid_name ON emp(age,deptid,NAME)
建立索引前
索引后
- 最佳左前缀法则
如果系统经常出现的sql如下:
EXPLAIN SELECT SQL_NO_CACHE * FROM emp WHERE emp.age=30 AND emp.name = 'abcd'
或者
EXPLAIN SELECT SQL_NO_CACHE * FROM emp WHERE emp.deptid=1 AND emp.name = 'abcd'
那原来的idx_age_deptid_name 还能否正常使用?
如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始并且不跳过索引中的列。
EXPLAIN SELECT SQL_NO_CACHE * FROM emp WHERE emp.age=30 AND emp.name = 'abcd'
虽然可以正常使用,但是只有部分被使用到了。
完全没有使用上索引。
结论:过滤条件要使用索引必须按照索引建立时的顺序,依次满足,一旦跳过某个字段,索引后面的字段都无法被使用。
- 不在索引列上做任何操作(计算、函数、(自动or手动)类型转换),会导致索引失效而转向全表扫描
这两条sql哪种写法更好
EXPLAIN SELECT SQL_NO_CACHE * FROM emp WHERE emp.name LIKE 'abc%'
EXPLAIN SELECT SQL_NO_CACHE * FROM emp WHERE LEFT(emp.name,3) = 'abc'
第一种
第二种
- 存储引擎不能使用索引中范围条件右边的列
如果系统经常出现的sql如下:
EXPLAIN SELECT SQL_NO_CACHE * FROM emp WHERE emp.age=30 AND emp.deptId>20 AND emp.name = 'abc' ;
那么索引 idx_age_deptid_name这个索引还能正常使用么?
如果这种sql 出现较多
应该建立:
create index idx_age_name_deptid on emp(age,name,deptid)
效果
- mysql 在使用不等于(!= 或者<>)的时候无法使用索引会导致全表扫描
CREATE INDEX idx_name ON emp(NAME)
EXPLAIN SELECT SQL_NO_CACHE * FROM emp WHERE emp.name <> 'abc'
- is not null 也无法使用索引,但是is null是可以使用索引的
UPDATE emp SET age =NULL WHERE id=123456;
下列哪个sql语句可以用到索引
EXPLAIN SELECT * FROM emp WHERE age IS NULL
EXPLAIN SELECT * FROM emp WHERE age IS NOT NULL
- like以通配符开头(’%abc…’)mysql索引失效会变成全表扫描的操作
- 字符串不加单引号索引失效
小总结
假设index(a,b,c)
Where语句 | 索引是否被使用 |
---|---|
where a = 3 | Y,使用到a |
where a = 3 and b = 5 | Y,使用到a,b |
where a = 3 and b = 5 and c = 4 | Y,使用到a,b,c |
where b = 3 或者 where b = 3 and c = 4 或者 where c = 4 | N |
where a = 3 and c = 5 | 使用到a, 但是c不可以,b中间断了 |
where a = 3 and b > 4 and c = 5 | 使用到a和b, c不能用在范围之后,b断了 |
where a is null and b is not null | is null 支持索引 但是is not null 不支持,所以 a 可以使用索引,但是 b不可以使用 |
where a <> 3 | 不能使用索引 |
where abs(a) =3 | 不能使用 索引 |
where a = 3 and b like ‘kk%’ and c = 4 | Y,使用到a,b,c |
where a = 3 and b like ‘%kk’ and c = 4 | Y,使用到a |
where a = 3 and b like ‘%kk%’ and c = 4 | Y,使用到a |
where a = 3 and b like ‘k%kk%’ and c = 4 | Y,使用到a,b,c |
一般性建议
- 对于单键索引,尽量选择针对当前query过滤性更好的索引
- 在选择组合索引的时候,当前Query中过滤性最好的字段在索引字段顺序中,位置越靠前越好。
- 在选择组合索引的时候,尽量选择可以能够包含当前query中的where字句中更多字段的索引
- 在选择组合索引的时候,如果某个字段可能出现范围查询时,尽量把这个字段放在索引次序的最后面
- 书写sql语句时,尽量避免造成索引失效的情况
二、关联查询优化
案例
# 下面开始explain分析
EXPLAIN SELECT * FROM class LEFT JOIN book ON class.card = book.card;
#结论:type 有All
# 添加索引优化
ALTER TABLE `book` ADD INDEX Y ( `card`);
换成inner join
delete from class where id<5;
# 第2次explain
EXPLAIN SELECT * FROM class LEFT JOIN book ON class.card = book.card;
#可以看到第二行的 type 变为了 ref,rows 也变成了优化比较明显。
#这是由左连接特性决定的。LEFT JOIN 条件用于确定如何从右表搜索行,左边一定都有,
#所以右边是我们的关键点,一定需要建立索引。
# 删除旧索引 + 新建 + 第3次explain
DROP INDEX Y ON book;
ALTER TABLE class ADD INDEX X (card);
EXPLAIN SELECT * FROM class LEFT JOIN book ON class.card = book.card;
建议
1、保证被驱动表的join字段已经被索引
2、left join 时,选择小表作为驱动表,大表作为被驱动表。
3、inner join 时,mysql会自己帮你把小结果集的表选为驱动表。
4、子查询尽量不要放在被驱动表,有可能使用不到索引。
5、能够直接多表关联的尽量直接关联,不用子查询。
三、子查询优化
尽量不要使用not in 或者 not exists
用left outer join on xxx is null 替代
四、排序分组优化
create index idx_age_deptid_name on emp (age,deptid,name)
以下 是否能使用到索引,能否去掉using filesort
1、explain select SQL_NO_CACHE * from emp order by age,deptid;
2、 explain select SQL_NO_CACHE * from emp order by age,deptid limit 10;
#无过滤 不索引
3、 explain select * from emp where age=45 order by deptid;
4、explain select * from emp where age=45 order by deptid,name;
5、explain select * from emp where age=45 order by deptid,empno;
6、explain select * from emp where age=45 order by name,deptid;
7、 explain select * from emp where deptid=45 order by age;
#顺序错,必排序
8、 explain select * from emp where age=45 order by deptid desc, name desc ;
9、 explain select * from emp where age=45 order by deptid asc, name desc ;
#方向反 必排序
ORDER BY子句,尽量使用Index方式排序,避免使用FileSort方式排序
索引的选择
结论:很显然,type 是 ALL,即最坏的情况。Extra 里还出现了 Using filesort,也是最坏的情况。优化是必须的。
开始优化:
思路: 尽量让where的过滤条件和排序使用上索引
但是一共两个字段(deptno,empno)上有过滤条件,一个字段(ename)有索引
1、我们建一个三个字段的组合索引可否?
我们发现using filesort 依然存在,所以name 并没有用到索引。
原因是因为empno是一个范围过滤,所以索引后面的字段不会再使用索引了。
所以我们建一个3值索引是没有意义的
那么我们先删掉这个索引,DROP INDEX idx_age_empno_name ON emp
为了去掉filesort我们可以把索引建成
也就是说empno 和name这个两个字段我只能二选其一。
这样我们优化掉了 using filesort。
执行一下sql
速度果然提高了4倍。
但是
如果我们选择那个范围过滤,而放弃排序上的索引呢
建立
DROP INDEX idx_age_name ON emp
create index idx_age_eno on emp(age,empno);
果然出现了filesort,而且type还是range光看字面其实并不美好。
我们来执行以下sql
原因是所有的排序都是在条件过滤之后才执行的,所以如果条件过滤了大部分数据的话,几百几千条数据进行排序其实并不是很消耗性能,即使索引优化了排序但实际提升性能很有限。 相对的 empno<101000 这个条件如果没有用到索引的话,要对几万条的数据进行扫描,这是非常消耗性能的,所以索引放在这个字段上性价比最高,是最优选择。
结论: 当范围条件和group by 或者 order by 的字段出现二选一时 ,优先观察条件字段的过滤数量,如果过滤的数据足够多,而需要排序的数据并不多时,优先把索引放在范围字段上。反之,亦然。
如果不在索引列上,filesort有两种算法:
mysql就要启动双路排序和单路排序
- 双路排序
MySQL 4.1之前是使用双路排序,字面意思就是两次扫描磁盘,最终得到数据,
读取行指针和orderby列,对他们进行排序,然后扫描已经排序好的列表,按照列表中的值重新从列表中读取对应的数据输出
从磁盘取排序字段,在buffer进行排序,再从磁盘取其他字段。 - 取一批数据,要对磁盘进行了两次扫描,众所周知,I\O是很耗时的,所以在mysql4.1之后,出现了第二种改进的算法,就是单路排序。
- 单路排序
从磁盘读取查询需要的所有列,按照order by列在buffer对它们进行排序,然后扫描排序后的列表进行输出,
它的效率更快一些,避免了第二次读取数据。并且把随机IO变成了顺序IO,但是它会使用更多的空间,
因为它把每一行都保存在内存中了。 - 结论及引申出的问题
由于单路是后出的,总体而言好过双路
但是用单路有问题
在sort_buffer中,方法B比方法A要多占用很多空间,因为方法B是把所有字段都取出, 所以有可能取出的数据的总大小超出了sort_buffer的容量,导致每次只能取sort_buffer容量大小的数据,进行排序(创建tmp文件,多路合并),排完再取取sort_buffer容量大小,再排……从而多次I/O。
本来想省一次I/O操作,反而导致了大量的I/O操作,反而得不偿失。
优化策略
- 增大sort_buffer_size参数的设置
- 增大max_length_for_sort_data参数的设置
- 减少select 后面的查询的字段。
提高Order By的速度
-
Order by时select * 是一个大忌只Query需要的字段, 这点非常重要。在这里的影响是:
1.1 当Query的字段大小总和小于max_length_for_sort_data 而且排序字段不是 TEXT|BLOB 类型时,会用改进后的算法——单路排序, 否则用老算法——多路排序。
1.2 两种算法的数据都有可能超出sort_buffer的容量,超出之后,会创建tmp文件进行合并排序,导致多次I/O,但是用单路排序算法的风险会更大一些,所以要提高sort_buffer_size。 -
尝试提高 sort_buffer_size
不管用哪种算法,提高这个参数都会提高效率,当然,要根据系统的能力去提高,因为这个参数是针对每个进程的 1M-8M之间调整 -
尝试提高 max_length_for_sort_data
提高这个参数, 会增加用改进算法的概率。但是如果设的太高,数据总容量超出sort_buffer_size的概率就增大,明显症状是高的磁盘I/O活动和低的处理器使用率. 1024-8192之间调整
GROUP BY关键字优化
group by 使用索引的原则几乎跟order by一致 ,唯一区别是group by 即使没有过滤条件用到索引,也可以直接使用索引。
五、最后使用索引的手段:覆盖索引
什么是覆盖索引?
简单说就是,select 到 from 之间查询的列 <=使用的索引列+主键
使用覆盖索引后