二叉树的递归套路
- 可以解决面试中绝大多数(95%)的二叉树问题尤其是树型dp问题
- 本质是利用递归遍历二叉树的便利性
小技巧多如牛毛,大技巧就两个:二叉树的递归套路、暴力递归改动态规划的套路
所谓二叉树的递归套路就是在树上做动态规划,什么是动态规划呢?动态规划就是用时间换空间的方式。
二叉树的递归套路
1)假设以X节点为头,假设可以向X左树和X右树要任何信息
2)在上一步的假设下,讨论以X为头节点的树,得到答案的可能性(最重要)
3)列出所有可能性后,确定到底需要向左树和右树要什么样的信息
4)把左树信息和右树信息求全集,就是任何一棵子树都需要返回的信息S
5)递归函数都返回S,每一棵子树都这么要求
6)写代码,在代码中考虑如何把左树的信息和右树信息整合出整棵树的信息
二叉树的递归套路深度实践
【题目1】
给定一颗二叉树的头节点head,返回这颗二叉树是不是平衡二叉树
什么是平衡树:在一棵二叉树中,每一颗子树左树的高度与右树的高度差不超过1
此题满足条件:
- 1)左树平衡
- 2)右树平衡
- 3)左树与右树高度差不超过1
package com.harrison.class08;
public class Code01_IsBalanced {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static class Info {
public boolean isBalanced;
public int height;
public Info(boolean i, int h) {
isBalanced = i;
height = h;
}
}
public static Info process(Node x) {
if (x == null) {
return new Info(true, 0);
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
boolean isBalanced = true;
if (!leftInfo.isBalanced) {
isBalanced = false;
}
if (!rightInfo.isBalanced) {
isBalanced = false;
}
if (Math.abs(leftInfo.height - rightInfo.height) > 1) {
isBalanced = false;
}
return new Info(isBalanced, height);
}
public static boolean isBalanced2(Node head) {
return process(head).isBalanced;
}
public static int process1(Node head, boolean[] ans) {
if (!ans[0] || head == null) {
return -1;
}
int leftHeight = process1(head.left, ans);
int rightHeight = process1(head.right, ans);
if (Math.abs(leftHeight - rightHeight) > 1) {
ans[0] = false;
}
return Math.max(leftHeight, rightHeight) + 1;
}
public static boolean isBalanced1(Node head) {
boolean[] ans = new boolean[1];
ans[0] = true;
process1(head, ans);
return ans[0];
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
public static void main(String[] args) {
int maxLevel = 5;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
if (isBalanced1(head) != isBalanced2(head)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
【题目2】
给定一颗二叉树的头结点head,任何两个结点之间都存在距离,返回整颗二叉树的最大距离
package com.harrison.class08;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
public class Code02_MaxDistance {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static int maxDistance1(Node head) {
if (head == null) {
return 0;
}
ArrayList<Node> arr = getPrelist(head);
HashMap<Node, Node> parentMap = getParentMap(head);
int max = 0;
for (int i = 0; i < arr.size(); i++) {
for (int j = i; j < arr.size(); j++) {
max = Math.max(max, distance(parentMap, arr.get(i), arr.get(j)));
}
}
return max;
}
public static ArrayList<Node> getPrelist(Node head) {
ArrayList<Node> arr = new ArrayList<>();
fillPrelist(head, arr);
return arr;
}
public static void fillPrelist(Node head, ArrayList<Node> arr) {
if (head == null) {
return;
}
arr.add(head);
fillPrelist(head.left, arr);
fillPrelist(head.right, arr);
}
public static HashMap<Node, Node> getParentMap(Node head) {
HashMap<Node, Node> map = new HashMap<>();
map.put(head, null);
fillParentMap(head, map);
return map;
}
public static void fillParentMap(Node head, HashMap<Node, Node> parentMap) {
if (head.left != null) {
parentMap.put(head.left, head);
fillParentMap(head.left, parentMap);
}
if (head.right != null) {
parentMap.put(head.right, head);
fillParentMap(head.right, parentMap);
}
}
public static int distance(HashMap<Node, Node> parentMap, Node o1, Node o2) {
HashSet<Node> o1Set = new HashSet<>();
Node cur = o1;
o1Set.add(cur);
while (parentMap.get(cur) != null) {
cur = parentMap.get(cur);
o1Set.add(cur);
}
cur = o2;
while (!o1Set.contains(cur)) {
cur = parentMap.get(cur);
}
Node lowestAncestor = cur;
cur = o1;
int distance1 = 1;
while (cur != lowestAncestor) {
cur = parentMap.get(cur);
distance1++;
}
cur = o2;
int distance2 = 1;
while (cur != lowestAncestor) {
cur = parentMap.get(cur);
distance2++;
}
return distance1 + distance2 - 1;
}
// public static class Info {
// public int maxDistance;
// public int height;
//
// public Info(int m, int h) {
// maxDistance=m;
// height = h;
// }
// }
//
// public static Info process(Node x) {
// if(x==null) {
// return new Info(0,0);
// }
// Info leftInfo=process(x.left);
// Info rightInfo=process(x.right);
// int height=Math.max(leftInfo.height, rightInfo.height)+1;
// int maxDistance=Math.max(Math.max(leftInfo.maxDistance, rightInfo.maxDistance), leftInfo.height+rightInfo.height+1);
// return new Info(maxDistance,height);
// }
//
// public static int maxDistance2(Node head) {
// return process(head).maxDistance;
// }
public static int maxDistance2(Node head) {
return process(head).maxDistance;
}
public static class Info {
public int maxDistance;
public int height;
public Info(int m, int h) {
maxDistance = m;
height = h;
}
}
public static Info process(Node x) {
if (x == null) {
return new Info(0, 0);
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
int p1 = leftInfo.maxDistance;
int p2 = rightInfo.maxDistance;
int p3 = leftInfo.height + rightInfo.height + 1;
int maxDistance = Math.max(Math.max(p1, p2), p3);
return new Info(maxDistance, height);
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
public static void main(String[] args) {
int maxLevel = 4;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
if (maxDistance1(head) != maxDistance2(head)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
【题目3】
给定一颗二叉树的头结点head,返回这颗二叉树中最大的二叉搜索子树的头结点
搜索二叉树定义:左树比头结点小,右树比头结点大,每颗子树都如此
package com.harrison.class08;
import java.util.ArrayList;
public class Code03_MaxSubBSTSize {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static int getBSTSize(Node head) {
if (head == null) {
return 0;
}
ArrayList<Node> arr = new ArrayList<>();
in(head, arr);
for (int i = 1; i < arr.size(); i++) {
if (arr.get(i).value <= arr.get(i - 1).value) {
return 0;
}
}
return arr.size();
}
public static void in(Node head, ArrayList<Node> arr) {
if (head == null) {
return;
}
in(head.left, arr);
arr.add(head);
in(head.right, arr);
}
public static int maxSubBSTSize1(Node head) {
if (head == null) {
return 0;
}
int h = getBSTSize(head);
if (h != 0) {
return h;
}
return Math.max(maxSubBSTSize1(head.left), maxSubBSTSize1(head.right));
}
// public static class Info{
// public boolean isAllBST;
// public int maxSubBSTSize;
// public int min;
// public int max;
//
// public Info(boolean is,int size,int mi,int ma) {
// isAllBST=is;
// maxSubBSTSize=size;
// min=mi;
// max=ma;
// }
// }
//
// public static Info process(Node x) {
// if(x==null) {
// return null;
// }
// Info leftInfo=process(x.left);
// Info rightInfo=process(x.right);
//
// int min=x.value;
// int max=x.value;
//
// if(leftInfo!=null) {
// min=Math.min(min, leftInfo.min);
// max=Math.max(max, leftInfo.max);
// }
// if(rightInfo!=null) {
// min=Math.min(min, rightInfo.min);
// max=Math.max(max, rightInfo.max);
// }
//
//
// int maxSubBSTSize=0;
// if(leftInfo!=null) {
// maxSubBSTSize=leftInfo.maxSubBSTSize;
// }
// if(rightInfo!=null) {
// maxSubBSTSize=Math.max(maxSubBSTSize, rightInfo.maxSubBSTSize);
// }
// boolean isAllBST=false;
//
// if(
// //左树整体需要是搜索二叉树
// (leftInfo==null?true:leftInfo.isAllBST)
// &&
// //右树整体需要是搜索二叉树
// (rightInfo==null?true:rightInfo.isAllBST)
// &&
// //左树最大值<x
// (leftInfo==null?true:leftInfo.max<x.value)
// &&
// //右树最小值>x
// (rightInfo==null?true:rightInfo.min>x.value)
// ) {
// maxSubBSTSize=
// (leftInfo==null?0:leftInfo.maxSubBSTSize)
// +
// (rightInfo==null?0:rightInfo.maxSubBSTSize)
// +
// 1;
// isAllBST=true;
//
// }
// return new Info(isAllBST,maxSubBSTSize,min,max);
// }
//
// public static int maxSubBSTSize2(Node head) {
// if(head==null) {
// return 0;
// }
// return process(head).maxSubBSTSize;
// }
public static int maxSubBSTSize2(Node head) {
if (head == null) {
return 0;
}
return process(head).maxBSTSubtreeSize;
}
public static class Info {
public int maxBSTSubtreeSize;
public int allSize;
public int max;
public int min;
public Info(int m, int a, int ma, int mi) {
maxBSTSubtreeSize = m;
allSize = a;
max = ma;
min = mi;
}
}
public static Info process(Node x) {
if (x == null) {
return null;
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
int max = x.value;
int min = x.value;
int allSize = 1;
if (leftInfo != null) {
max = Math.max(leftInfo.max, max);
min = Math.min(leftInfo.min, min);
allSize += leftInfo.allSize;
}
if (rightInfo != null) {
max = Math.max(rightInfo.max, max);
min = Math.min(rightInfo.min, min);
allSize += rightInfo.allSize;
}
int p1 = -1;
if (leftInfo != null) {
p1 = leftInfo.maxBSTSubtreeSize;
}
int p2 = -1;
if (rightInfo != null) {
p2 = rightInfo.maxBSTSubtreeSize;
}
int p3 = -1;
boolean leftBST = leftInfo == null ? true : (leftInfo.maxBSTSubtreeSize == leftInfo.allSize);
boolean rightBST = rightInfo == null ? true : (rightInfo.maxBSTSubtreeSize == rightInfo.allSize);
if (leftBST && rightBST) {
boolean leftMaxLessX = leftInfo == null ? true : (leftInfo.max < x.value);
boolean rightMinMoreX = rightInfo == null ? true : (x.value < rightInfo.min);
if (leftMaxLessX && rightMinMoreX) {
int leftSize = leftInfo == null ? 0 : leftInfo.allSize;
int rightSize = rightInfo == null ? 0 : rightInfo.allSize;
p3 = leftSize + rightSize + 1;
}
}
return new Info(Math.max(p1, Math.max(p2, p3)), allSize, max, min);
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
public static void main(String[] args) {
int maxLevel = 4;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
if (maxSubBSTSize1(head) != maxSubBSTSize2(head)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
【题目4】
派对的最大快乐值
员工信息的定义如下:
class Employee{
public int happy;//这名员工可以带来的快乐值
List<Employee> subordinates;//这名员工有哪些直接下级
}
派对的最大快乐值:
公司的每个员工都符合Employee类的描述。整个公司的人员结构可以看作是一棵标准的、没有环的多叉树。树的头节点是公司唯一的老板。除老板之外的每个员工都有唯一的直接上级。叶节点是没有任何下属的基层员工(subordinates列表为空),除基层员工外,每个员工都有一一个或多个直接下级。
package com.harrison.class08;
import java.util.ArrayList;
import java.util.List;
public class Code04_MaxHappy {
public static class Employee {
public int happy;
public List<Employee> nexts;
public Employee(int h) {
happy = h;
nexts = new ArrayList<>();
}
}
public static class Info {
public int no;
public int yes;
public Info(int n, int y) {
no = n;
yes = y;
}
}
public static Info process(Employee x) {
if (x == null) {
return new Info(0, 0);
}
int no = 0;
int yes = x.happy;
for (Employee next : x.nexts) {
Info nextInfo = process(next);
no += Math.max(nextInfo.no, nextInfo.yes);
yes += nextInfo.no;
}
return new Info(no, yes);
}
public static int maxHappy1(Employee boss) {
if (boss == null) {
return 0;
}
return process1(boss, false);
}
// 当前来到的节点叫cur,
// up表示cur的上级是否来,
// 该函数含义:
// 如果up为true,表示在cur上级已经确定来,的情况下,cur整棵树能够提供最大的快乐值是多少?
// 如果up为false,表示在cur上级已经确定不来,的情况下,cur整棵树能够提供最大的快乐值是多少?
public static int process1(Employee cur, boolean up) {
if (up) {
// 如果cur的上级来的话,cur没得选,只能不来
int ans = 0;
for (Employee next : cur.nexts) {
ans += process1(next, false);
}
return ans;
} else {
// 如果cur的上级不来的话,cur可以选,可以来也可以不来
int p1 = cur.happy;
int p2 = 0;
for (Employee next : cur.nexts) {
p1 += process1(next, true);
p2 += process1(next, false);
}
return Math.max(p1, p2);
}
}
public static int maxHappy2(Employee head) {
Info allInfo = process(head);
return Math.max(allInfo.no, allInfo.yes);
}
public static Employee genarateBoss(int maxLevel, int maxNexts, int maxHappy) {
if (Math.random() < 0.02) {
return null;
}
Employee boss = new Employee((int) (Math.random() * (maxHappy + 1)));
genarateNexts(boss, 1, maxLevel, maxNexts, maxHappy);
return boss;
}
// for test
public static void genarateNexts(Employee e, int level, int maxLevel, int maxNexts, int maxHappy) {
if (level > maxLevel) {
return;
}
int nextsSize = (int) (Math.random() * (maxNexts + 1));
for (int i = 0; i < nextsSize; i++) {
Employee next = new Employee((int) (Math.random() * (maxHappy + 1)));
e.nexts.add(next);
genarateNexts(next, level + 1, maxLevel, maxNexts, maxHappy);
}
}
public static void main(String[] args) {
int maxLevel = 4;
int maxNexts = 7;
int maxHappy = 100;
int testTimes = 100000;
for (int i = 0; i < testTimes; i++) {
Employee boss = genarateBoss(maxLevel, maxNexts, maxHappy);
if (maxHappy1(boss) != maxHappy2(boss)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
【题目5】
给定一棵二叉树的头节点head,返回这颗二叉树是不是满二叉树
package com.harrison.class08;
public class Code05_IsFull {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static class Info {
public int height;
public int nodes;
public Info(int h, int n) {
height = h;
nodes = n;
}
}
public static Info process(Node head) {
if (head == null) {
return new Info(0, 0);
}
Info leftInfo = process(head.left);
Info rightInfo = process(head.right);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
int nodes = leftInfo.nodes + rightInfo.nodes + 1;
return new Info(height, nodes);
}
public static boolean isFull1(Node head) {
if (head == null) {
return true;
}
int height = h(head);
int nodes = n(head);
return (1 << height) - 1 == nodes;
}
public static int h(Node head) {
if (head == null) {
return 0;
}
return Math.max(h(head.left), h(head.right)) + 1;
}
public static int n(Node head) {
if (head == null) {
return 0;
}
return n(head.left) + n(head.right) + 1;
}
public static boolean isFull2(Node head) {
if (head == null) {
return true;
}
Info all = process(head);
return (1 << all.height) - 1 == all.nodes;
}
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
public static void main(String[] args) {
int maxLevel = 5;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
if (isFull1(head) != isFull2(head)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
【题目6】
给定一棵二叉树的头节点head,返回这颗二叉树中是不是完全二叉树
列可能性:如果四种情况都不符合,必不是完全二叉树,如果有一种情况成立,就是
- 1)满二叉树(无缺口)
- 2)左树是完全二叉树,右树是满二叉树,并且左树高度比右树高度大1
- 3)左树是满二叉树,右树是满二叉树,且左树高度比右树高度大1
- 4)左树是满二叉树,右树是完全二叉树,且两边高度一样
package com.harrison.class08;
import java.util.LinkedList;
public class Code06_IsCBT {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
// 对每一颗子树,是否是满二叉树、是否是完全二叉树、高度多少
public static class Info {
public boolean isFull;
public boolean isCBT;
public int height;
public Info(boolean full, boolean cbt, int h) {
isFull = full;
isCBT = cbt;
height = h;
}
}
public static Info process(Node x) {
if (x == null) {
return new Info(true, true, 0);
}
Info leftInfo = process(x.left);
Info rightInfo = process(x.right);
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
boolean isFull = leftInfo.isFull && rightInfo.isFull && leftInfo.height == rightInfo.height;
boolean isCBT = false;
if (isFull) {
isCBT = true;
} else {
// 以x为头整棵树,不满
if (leftInfo.isCBT && rightInfo.isCBT) {
if (leftInfo.isCBT && rightInfo.isFull && leftInfo.height == rightInfo.height + 1) {
isCBT = true;
}
if (leftInfo.isFull && rightInfo.isFull && leftInfo.height == rightInfo.height + 1) {
isCBT = true;
}
if (leftInfo.isFull && rightInfo.isCBT && leftInfo.height == rightInfo.height) {
isCBT = true;
}
}
}
return new Info(isFull, isCBT, height);
}
public static boolean isCBT1(Node head) {
if (head == null) {
return true;
}
LinkedList<Node> queue = new LinkedList<>();
// 是否遇到过左右两个孩子不双全的节点
boolean leaf = false;
Node l = null;
Node r = null;
queue.add(head);
while (!queue.isEmpty()) {
head = queue.poll();
l = head.left;
r = head.right;
if (
// 如果遇到了不双全的节点之后,又发现当前节点不是叶节点
(leaf && (l != null || r != null)) || (l == null && r != null)
) {
return false;
}
if (l != null) {
queue.add(l);
}
if (r != null) {
queue.add(r);
}
if (l == null || r == null) {
leaf = true;
}
}
return true;
}
public static boolean isCBT2(Node head) {
if (head == null) {
return true;
}
return process(head).isCBT;
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
public static void main(String[] args) {
int maxLevel = 5;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
if (isCBT1(head) != isCBT2(head)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
【题目7】
给定一棵二叉树的头节点head,和另外两个节点a和b。返回a和b的最低公共祖先
最低公共祖先:a和b往上走初次交汇的点
- 1)o1和o2都不在x上
- 2)o1和o2只有一个在x上
- 3)o1和o2都在以x为头结点的树上
- 1> 左树右树各一个
- 2> 左树有两个
- 3> 右树有两个
- 4> x自己是o1或o2
左树右树各返回三个信息:
- 1)o1和o2最初交汇点,没有交汇点返回null
- 2)在子树上是否发现o1
- 3)在子树上是否发现o2
package com.harrison.class08;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
public class Code07_LowestAncestor {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static class Info {
public Node ans;
public boolean findA;
public boolean findB;
public Info(Node an, boolean fA, boolean fB) {
ans = an;
findA = fA;
findB = fB;
}
}
public static Info process(Node x, Node a, Node b) {
if (x == null) {
return new Info(null, false, false);
}
Info leftInfo = process(x.left, a, b);
Info rightInfo = process(x.right, a, b);
boolean findA = (x == a) || leftInfo.findA || rightInfo.findA;
boolean findB = (x == b) || leftInfo.findB || rightInfo.findB;
Node ans = null;
if (leftInfo.ans != null) {
ans = leftInfo.ans;
} else if (rightInfo.ans != null) {
ans = rightInfo.ans;
} else {
if (findA && findB) {
ans = x;
}
}
return new Info(ans, findA, findB);
}
public static Node lowestAncestor1(Node head, Node o1, Node o2) {
if (head == null) {
return null;
}
// key的父节点是value
HashMap<Node, Node> parentMap = new HashMap<>();
parentMap.put(head, null);
fillParentMap(head, parentMap);
HashSet<Node> o1Set = new HashSet<>();
Node cur = o1;
o1Set.add(cur);
while (parentMap.get(cur) != null) {
cur = parentMap.get(cur);
o1Set.add(cur);
}
cur = o2;
while (!o1Set.contains(cur)) {
cur = parentMap.get(cur);
}
return cur;
}
public static void fillParentMap(Node head, HashMap<Node, Node> parentMap) {
if (head.left != null) {
parentMap.put(head.left, head);
fillParentMap(head.left, parentMap);
}
if (head.right != null) {
parentMap.put(head.right, head);
fillParentMap(head.right, parentMap);
}
}
public static Node lowestAncestor2(Node head, Node a, Node b) {
return process(head, a, b).ans;
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
// for test
public static Node pickRandomOne(Node head) {
if (head == null) {
return null;
}
ArrayList<Node> arr = new ArrayList<>();
fillPrelist(head, arr);
int randomIndex = (int) (Math.random() * arr.size());
return arr.get(randomIndex);
}
// for test
public static void fillPrelist(Node head, ArrayList<Node> arr) {
if (head == null) {
return;
}
arr.add(head);
fillPrelist(head.left, arr);
fillPrelist(head.right, arr);
}
public static void main(String[] args) {
int maxLevel = 4;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
Node o1 = pickRandomOne(head);
Node o2 = pickRandomOne(head);
if (lowestAncestor1(head, o1, o2) != lowestAncestor2(head, o1, o2)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}