6.链表相关面试题

链表问题
面试链表解题的方法论
  1. 对于笔试,不用太在乎空间复杂度,一切为了时间复杂度
  2. 对于面试,时间复杂度依然放在第一位,但是一定要找到空间最省的方法
链表面试题常用数据结构和技巧
  1. 使用容器(哈希表、数组等)
  2. 快慢指针
快慢指针
  1. 输入链表头节点,奇数长度返回中点,偶数长度返回上中点
  2. 输入链表头节点,奇数长度返回中点,偶数长度返回下中点
  3. 输入链表头节点,奇数长度返回中点前一个,偶数长度返回上中点前一个
  4. 输入链表头节点,奇数长度返回中点前一个,偶数长度返回下中点前一个
package com.harrison.six;

import java.util.ArrayList;

public class Code01_LinkedListMid {
    
    
	public static class Node {
    
    
		public int value;
		public Node next;

		public Node(int v) {
    
    
			value = v;
		}
	}

	// 奇数长度返回中点,偶数长度返回上中点
	public static Node midOrUpMidNode(Node head) {
    
    
		if (head == null || head.next == null || head.next.next == null) {
    
    
			return head;
		}
		// 代表链表有三个或三个以上节点
		Node slow = head.next;
		Node fast = head.next.next;
		while (fast.next != null && fast.next.next != null) {
    
    
			slow = slow.next;
			fast = fast.next.next;
		}
		return slow;
	}

	// 奇数长度返回中点,偶数长度返回下中点
	public static Node midOrDownMidNode(Node head) {
    
    
		if (head == null || head.next == null) {
    
    
			return head;
		}
		Node slow = head.next;
		Node fast = head.next;
		while (fast.next != null && fast.next.next != null) {
    
    
			slow = slow.next;
			fast = fast.next.next;
		}
		return slow;
	}

	// 奇数长度返回中点前一个,偶数长度返回上中点前一个
	public static Node midOrUpMidPreNode(Node head) {
    
    
		if (head == null || head.next == null || head.next.next == null) {
    
    
			return head;
		}
		// 代表链表有三个或三个以上节点
		Node slow = head;
		Node fast = head.next.next;
		while (fast.next != null && fast.next.next != null) {
    
    
			slow = slow.next;
			fast = fast.next.next;
		}
		return slow;
	}

	// 奇数长度返回中点前一个,偶数长度返回下中点前一个
	public static Node midOrDownMidPreNode(Node head) {
    
    
		if (head == null || head.next == null) {
    
    
			return null;
		}
		if (head.next.next == null) {
    
    
			return head;
		}
		Node slow = head;
		Node fast = head.next;
		while (fast.next != null && fast.next.next != null) {
    
    
			slow = slow.next;
			fast = fast.next.next;
		}
		return slow;
	}

	public static Node right1(Node head) {
    
    
		if (head == null) {
    
    
			return null;
		}
		Node cur = head;
		ArrayList<Node> arr = new ArrayList<>();
		while (cur != null) {
    
    
			arr.add(cur);
			cur = cur.next;
		}
		return arr.get((arr.size() - 1) / 2);
	}

	public static Node right2(Node head) {
    
    
		if (head == null) {
    
    
			return null;
		}
		Node cur = head;
		ArrayList<Node> arr = new ArrayList<>();
		while (cur != null) {
    
    
			arr.add(cur);
			cur = cur.next;
		}
		return arr.get(arr.size() / 2);
	}

	public static Node right3(Node head) {
    
    
		if (head == null || head.next == null || head.next.next == null) {
    
    
			return null;
		}
		Node cur = head;
		ArrayList<Node> arr = new ArrayList<>();
		while (cur != null) {
    
    
			arr.add(cur);
			cur = cur.next;
		}
		return arr.get((arr.size() - 3) / 2);
	}

	public static Node right4(Node head) {
    
    
		if (head == null || head.next == null) {
    
    
			return null;
		}
		Node cur = head;
		ArrayList<Node> arr = new ArrayList<>();
		while (cur != null) {
    
    
			arr.add(cur);
			cur = cur.next;
		}
		return arr.get((arr.size() - 2) / 2);
	}

	public static void main(String[] args) {
    
    
		Node test = null;
		test = new Node(0);
		test.next = new Node(1);
		test.next.next = new Node(2);
		test.next.next.next = new Node(3);
		test.next.next.next.next = new Node(4);
		test.next.next.next.next.next = new Node(5);
		test.next.next.next.next.next.next = new Node(6);
		test.next.next.next.next.next.next.next = new Node(7);
		test.next.next.next.next.next.next.next.next = new Node(8);

		Node ans1 = null;
		Node ans2 = null;

		ans1 = midOrUpMidNode(test);
		ans2 = right1(test);
		System.out.println(ans1 != null ? ans1.value : "无");
		System.out.println(ans2 != null ? ans2.value : "无");

		ans1 = midOrDownMidNode(test);
		ans2 = right2(test);
		System.out.println(ans1 != null ? ans1.value : "无");
		System.out.println(ans2 != null ? ans2.value : "无");

		ans1 = midOrUpMidPreNode(test);
		ans2 = right3(test);
		System.out.println(ans1 != null ? ans1.value : "无");
		System.out.println(ans2 != null ? ans2.value : "无");

		ans1 = midOrDownMidPreNode(test);
		ans2 = right4(test);
		System.out.println(ans1 != null ? ans1.value : "无");
		System.out.println(ans2 != null ? ans2.value : "无");

	}
}
常见面试题

给定一个单链表的头节点head,请判断该链表是否为回文结构。

  1. 栈方法特别简单(笔试用)
  2. 改原链表的方法就需要注意边界了(面试用)
package com.harrison.six;

import java.util.Stack;

public class Code02_PalindromeList {
    
    
	public static class Node {
    
    
		public int value;
		public Node next;

		public Node(int v) {
    
    
			value = v;
		}
	}

	// need n extra space
	public static boolean isPalindrome1(Node head) {
    
    
		Stack<Node> stack = new Stack<Node>();
		Node cur = head;
		while (cur != null) {
    
    
			stack.push(cur);
			cur = cur.next;
		}
		while (head != null) {
    
    
			if (head.value != stack.pop().value) {
    
    
				return false;
			}
			head = head.next;
		}
		return true;
	}

	// need n/2 extra space
	public static boolean isPalindrome2(Node head) {
    
    
		if (head == null || head.next == null) {
    
    
			return true;
		}
		Node right = head.next;
		Node cur = head;
		while (cur.next != null && cur.next.next != null) {
    
    
			right = right.next;
			cur = cur.next.next;
		}
		Stack<Node> stack = new Stack<Node>();
		while (right != null) {
    
    
			stack.push(right);
			right = right.next;
		}
		while (!stack.isEmpty()) {
    
    
			if (head.value != stack.pop().value) {
    
    
				return false;
			}
			head = head.next;
		}
		return true;
	}

	// need O(1) extra space
	public static boolean isPalindrome3(Node head) {
    
    
		if (head == null || head.next == null) {
    
    
			return true;
		}
		Node n1 = head;
		Node n2 = head;
		while (n2.next != null && n2.next.next != null) {
    
    // find mid node
			n1 = n1.next;// n1->mid
			n2 = n2.next.next;// n2-> end
		}
		// 奇数个n1来到中点,偶数个n1来到上中点
		n2 = n1.next;// n2 -> right part first node
		n1.next = null;// mid.next -> null
		Node n3 = null;
		while (n2 != null) {
    
    // right part convert
			n3 = n2.next;// n3-> save next node
			n2.next = n1;// next of right node convert
			n1 = n2;// n1 move
			n2 = n3;// n2 move
		}
		n3 = n1;// n3-> save last node
		n2 = head;// n2-> left first node
		boolean res = true;
		while (n1 != null && n2 != null) {
    
    // check palindrome
			if (n1.value != n2.value) {
    
    
				res = false;
				break;
			}
			n1 = n1.next;// left to mid
			n2 = n2.next;// right to mid
		}
		n1 = n3.next;
		n3.next = null;
		while (n1 != null) {
    
    // recover list
			n2 = n1.next;
			n1.next = n3;
			n3 = n1;
			n1 = n2;
		}
		return res;
	}

	public static void printLinkedList(Node node) {
    
    
		System.out.print("Linked List:");
		while (node != null) {
    
    
			System.out.print(node.value + " ");
			node = node.next;
		}
		System.out.println();
	}

	public static void main(String[] args) {
    
    
		Node head = null;
		printLinkedList(head);
		System.out.print(isPalindrome1(head)+ " | ");
		System.out.print(isPalindrome2(head)+ " | ");
		System.out.print(isPalindrome3(head)+ " | ");
		printLinkedList(head);
		System.out.println("=======================");

		head = new Node(1);
		printLinkedList(head);
		System.out.print(isPalindrome1(head)+ " | ");
		System.out.print(isPalindrome2(head)+ " | ");
		System.out.print(isPalindrome3(head)+ " | ");
		printLinkedList(head);
		System.out.println("=======================");

		head = new Node(1);
		head.next = new Node(2);
		printLinkedList(head);
		System.out.print(isPalindrome1(head)+ " | ");
		System.out.print(isPalindrome2(head)+ " | ");
		System.out.print(isPalindrome3(head)+ " | ");
		printLinkedList(head);
		System.out.println("=======================");

		head = new Node(1);
		head.next = new Node(1);
		printLinkedList(head);
		System.out.print(isPalindrome1(head) + " | ");
		System.out.print(isPalindrome2(head) + " | ");
		System.out.println(isPalindrome3(head) + " | ");
		printLinkedList(head);
		System.out.println("=========================");

		head = new Node(1);
		head.next = new Node(2);
		head.next.next = new Node(3);
		printLinkedList(head);
		System.out.print(isPalindrome1(head) + " | ");
		System.out.print(isPalindrome2(head) + " | ");
		System.out.println(isPalindrome3(head) + " | ");
		printLinkedList(head);
		System.out.println("=========================");

		head = new Node(1);
		head.next = new Node(2);
		head.next.next = new Node(1);
		printLinkedList(head);
		System.out.print(isPalindrome1(head) + " | ");
		System.out.print(isPalindrome2(head) + " | ");
		System.out.println(isPalindrome3(head) + " | ");
		printLinkedList(head);
		System.out.println("=========================");

		head = new Node(1);
		head.next = new Node(2);
		head.next.next = new Node(3);
		head.next.next.next = new Node(1);
		printLinkedList(head);
		System.out.print(isPalindrome1(head) + " | ");
		System.out.print(isPalindrome2(head) + " | ");
		System.out.println(isPalindrome3(head) + " | ");
		printLinkedList(head);
		System.out.println("=========================");

		head = new Node(1);
		head.next = new Node(2);
		head.next.next = new Node(2);
		head.next.next.next = new Node(1);
		printLinkedList(head);
		System.out.print(isPalindrome1(head) + " | ");
		System.out.print(isPalindrome2(head) + " | ");
		System.out.println(isPalindrome3(head) + " | ");
		printLinkedList(head);
		System.out.println("=========================");

		head = new Node(1);
		head.next = new Node(2);
		head.next.next = new Node(3);
		head.next.next.next = new Node(2);
		head.next.next.next.next = new Node(1);
		printLinkedList(head);
		System.out.print(isPalindrome1(head) + " | ");
		System.out.print(isPalindrome2(head) + " | ");
		System.out.println(isPalindrome3(head) + " | ");
		printLinkedList(head);
		System.out.println("=========================");
	}

}

将单向链表按某值划分成左边小、中间相等、右边大的形式

  1. 把链表放入数组里,在数组上做partition(笔试用)
  2. 分成小、中、大三部分,再把各个部分之间串起来(面试用)
package com.harrison.six;

public class Code03_SmallerEqualBigger {
    
    
	public static class Node{
    
    
		public int value;
		public Node next;
		public Node(int v) {
    
    
			value=v;
		}
	}
	
	public static void swap(Node [] nodeArr,int a,int b) {
    
    
		Node tmpNode=nodeArr[a];
		nodeArr[a]=nodeArr[b];
		nodeArr[b]=tmpNode;
	}
	
	public static void arrPartition(Node[] nodeArr,int pivot) {
    
    
		int small=-1;
		int big=nodeArr.length;
		int index=0;
		while(index!=big) {
    
    
			if(nodeArr[index].value<pivot) {
    
    
				swap(nodeArr, ++small, index++);
			}else if(nodeArr[index].value==pivot) {
    
    
				index++;
			}else {
    
    
				swap(nodeArr, --big, index);
			}
		}
	}
	
	public static Node listPartition1(Node head,int pivot) {
    
    
		if(head==null) {
    
    
			return head;
		}
		Node cur=head;
		int i=0;
		while(cur!=null) {
    
    
			i++;
			cur=cur.next;
		}
		Node[] nodeArr=new Node[i];
		i=0;
		cur=head;
		for(i=0; i!=nodeArr.length; i++) {
    
    
			nodeArr[i]=cur;
			cur=cur.next;
		}
		arrPartition(nodeArr, pivot);
		for(i=1; i!=nodeArr.length; i++) {
    
    
			nodeArr[i-1].next=nodeArr[i];
		}
		nodeArr[i-1]=null;
		return nodeArr[0];
	}
	
	public static Node listPartition2(Node head,int pivot) {
    
    
		Node sH=null;//小于区的头
		Node sT=null;//小于区的尾
		Node eH=null;//等于区的头
		Node eT=null;//等于区的尾
		Node bH=null;//大于区的头
		Node bT=null;//大于区的尾
		Node next=null;//save next node
		while(head!=null) {
    
    
			next=head.next;
			head.next=null;
			if(head.value<pivot) {
    
    
				if(sH==null) {
    
    
					sH=head;
					sT=head;
				}else {
    
    
					sT.next=head;
					sT=head;
				}
			}else if(head.value==pivot) {
    
    
				if(eH==null) {
    
    
					eH=head;
					eT=head;
				}else {
    
    
					eT.next=head;
					eT=head;
				}
			}else {
    
    
				if(bH==null) {
    
    
					bH=head;
					bT=head;
				}else {
    
    
					bT.next=head;
					bT=head;
				}
			}
			head=next;
		}
		// 小于区域的尾巴,连等于区域的头,等于区域的尾巴连大于区域的头
		if(sT!=null) {
    
    //如果有小于区域
			sT.next=eH;
			eT=eT==null?sT:eT;//谁去连大于区域的头,谁就变成等于区域的头eT
		}
		if(eT!=null) {
    
    
			eT.next=bH;
		}
		return sH!=null?sH:(eH!=null?eH:bH);
	}
	
	public static void printLinkedList(Node node) {
    
    
		System.out.print("Linked List:");
		while(node!=null) {
    
    
			System.out.print(node.value+" ");
			node=node.next;
		}
		System.out.println();
	}
	
	public static void main(String[] args) {
    
    
		Node head1=new Node(7);
		head1.next=new Node(9);
		head1.next.next=new Node(1);
		head1.next.next.next = new Node(8);
		head1.next.next.next.next = new Node(5);
		head1.next.next.next.next.next = new Node(2);
		head1.next.next.next.next.next.next = new Node(5);
		printLinkedList(head1);
		head1=listPartition2(head1, 5);
		printLinkedList(head1);
		
	}
	
}

一种特殊的单链表节点类型描述如下:

class Node{
    
    
	int value;
	Node next;
	Node rand;
	Node(int val){
    
    
		value=val;
	}
}

rand指针是单链表节点结构中新增的指针,rand可能指向链表中的任意一个节点,也可能指向null。给定一个由Node节点类型组成的无环单链表的头节点head,请实现一个函数完成这个链表的复制,并返回复制的新链表的头节点。要求:时间复杂度O(N),额外空间复杂度O(1)

package com.harrison.six;

import java.util.HashMap;

public class Code04_CopyListWithRandom {
    
    
	public static class Node {
    
    
		int value;
		Node next;
		Node rand;

		Node(int val) {
    
    
			value = val;
		}
	}

	public static Node copyRandomList1(Node head) {
    
    
		// key 老节点 value 新节点
		HashMap<Node, Node> map = new HashMap<Node, Node>();
		Node cur = head;
		while (cur != null) {
    
    
			map.put(cur, new Node(cur.value));
			cur = cur.next;
		}
		cur = head;
		while (cur != null) {
    
    
			// cur 老
			// map.get(cur) 新
			// 新.next -> cur.next克隆节点找到
			map.get(cur).next = map.get(cur.next);
			map.get(cur).rand = map.get(cur.rand);
			cur = cur.next;
		}
		return map.get(head);
	}

	public static Node copyRandomList2(Node head) {
    
    
		if (head == null) {
    
    
			return null;
		}
		Node cur = head;
		Node next = null;
		// copy node and link to every node
		// 1 -> 2 -> 3 -> null
		// 1 -> 1' -> 2 -> 2' -> 3 -> 3'
		while (cur != null) {
    
    
			// cur 老 next 老的下一个
			next = cur.next;
			cur.next = new Node(cur.value);
			cur.next.next = next;
			cur = next;
		}
		cur = head;
		Node curCopy = null;
		// set curCopy node rand
		while (cur != null) {
    
    
			next = cur.next.next;
			curCopy = cur.next;
			curCopy.rand = cur.rand != null ? cur.rand.next : null;
			cur = next;
		}
		Node res = head.next;
		cur = head;
		// split next方向上,把新老链表分离,不用动rand指针
		while (cur != null) {
    
    
			next = cur.next.next;
			curCopy = cur.next;
			cur.next = next;
			curCopy.next = next != null ? next.next : null;
			cur = next;
		}
		return res;
	}

	public static void printLinkedList(Node node) {
    
    
		System.out.print("Linked List:");
		while (node != null) {
    
    
			System.out.print(node.value + " ");
			node = node.next;
		}
		System.out.println();
	}
	
	public static void main(String[] args) {
    
    
		Node head1=new Node(7);
		head1.next=new Node(9);
		head1.next.next=new Node(1);
		head1.next.next.next = new Node(8);
		head1.next.next.next.next = new Node(5);
		head1.next.next.next.next.next = new Node(2);
		head1.next.next.next.next.next.next = new Node(5);
		printLinkedList(head1);
		//head1=copyRandomList1(head1);
		head1=copyRandomList2(head1);
		printLinkedList(head1);
		
	}
}

给定两个可能有环也可能无环的单链表,头节点head1和head2。请实现一个函数,如果两个链表相交,请返回相交的第一个节点。如果不相交,返回null。【要求】:如果两个链表长度之和为N,时间复杂度请达到O(N),额外空间复杂度请达到O(1)。

  1. 给你一个链表,返回第一个入环的节点
  2. 两个无环链表相交,返回第一个相交节点
  3. 两个有环链表相交,返回第一个相交节点
package com.harrison.six;

public class Code05_FindFirstIntesectNode {
    
    
	public static class Node {
    
    
		public int value;
		public Node next;

		public Node(int v) {
    
    
			value = v;
		}
	}

	// 找到链表第一个入环节点,如果无环,返回null
	public static Node getLoopNode(Node head) {
    
    
		if (head == null || head.next == null || head.next.next == null) {
    
    
			return null;
		}
		// n1 慢指针 n2 快指针
		Node n1 = head.next;
		Node n2 = head.next.next;
		while (n1 != n2) {
    
    
			if (n2.next == null || n2.next.next == null) {
    
    
				return null;
			}
			n2 = n2.next.next;
			n1 = n1.next;
		}
		n2 = head;// n2 -> walk again form head
		// n1位置不变
		while (n1 != n2) {
    
    
			n1 = n1.next;
			n2 = n2.next;
		}
		return n1;
	}

	// 如果两个链表都无环,返回第一个相交节点,如果不相交,返回null
	public static Node noLoop(Node head1, Node head2) {
    
    
		if (head1 == null || head2 == null) {
    
    
			return null;
		}
		Node cur1 = head1;
		Node cur2 = head2;
		int n = 0;
		// n>0 cur1长 n<0 cur2长 n==0 一样长
		while (cur1.next != null) {
    
    
			n++;
			cur1 = cur1.next;
		}
		while (cur2.next != null) {
    
    
			n--;
			cur2 = cur2.next;
		}
		// 结束两个while循环后,两个链表的当前节点分别来到了end1和end2
		// 如果end1!=end2,说明没有共用一块内存地址,两个链表必不相交
		if (cur1 != cur2) {
    
    
			return null;
		}
		// n 链表1减去链表2的长度
		cur1 = n > 0 ? head1 : head2;// 谁长,谁的头变成cur1
		cur2 = cur1 == head1 ? head2 : head1;// 谁短,谁的头变成cur2
		n = Math.abs(n);
		/**
		 * 长的链表先把多的节点先走完,然后两条链表一起走 因为此时两条链表长度一样且公共部分也一样长 所以,必然会在第一个相交的节点处相遇
		 */
		while (n != 0) {
    
    
			n--;
			cur1 = cur1.next;
		}
		while (cur1 != cur2) {
    
    
			cur1 = cur1.next;
			cur2 = cur2.next;
		}
		return cur1;
	}

	// 两个有环链表,返回第一个相交节点,如果不想相交返回null
	// 两个有环链表相交,则一定公用同一个环!!!
	public static Node bothLoop(Node head1, Node loop1, Node head2, Node loop2) {
    
    
		Node cur1 = null;
		Node cur2 = null;
		// 如果两个链表第一个相交节点相等,则不用考虑共同的环,且loop1和loop2成为end1和end2
		if (loop1 == loop2) {
    
    
			cur1 = head1;
			cur2 = head2;
			int n = 0;
			while (cur1 != loop1) {
    
    
				n++;
				cur1 = cur1.next;
			}
			while (cur2 != loop2) {
    
    
				n--;
				cur2 = cur2.next;
			}
			if (cur1 != cur2) {
    
    
				return null;
			}
			cur1 = n > 0 ? head1 : head2;
			cur2 = cur1 == head1 ? head2 : head1;
			n = Math.abs(n);
			while (n != 0) {
    
    
				n--;
				cur1 = cur1.next;
			}
			while (cur1 != cur2) {
    
    
				cur1 = cur1.next;
				cur2 = cur2.next;
			}
			return cur1;
		} else {
    
    
			cur1 = loop1.next;
			while (cur1 != loop1) {
    
    
				if (cur1 == loop2) {
    
    
					return loop1;
				}
				cur1 = cur1.next;
			}
			return null;
		}
	}

	public static Node getIntersectNode(Node head1, Node head2) {
    
    
		if (head1 == null || head2 == null) {
    
    
			return null;
		}
		Node loop1 = getLoopNode(head1);
		Node loop2 = getLoopNode(head2);
		if (loop1 == null && loop2 == null) {
    
    
			return noLoop(head1, head2);
		}
		if (loop1 != null && loop2 != null) {
    
    
			return bothLoop(head1, loop1, head2, loop2);
		}
		return null;
	}

	public static void main(String[] args) {
    
    
		// 1->2->3->4->5->6->7->null
		Node head1 = new Node(1);
		head1.next = new Node(2);
		head1.next.next = new Node(3);
		head1.next.next.next = new Node(4);
		head1.next.next.next.next = new Node(5);
		head1.next.next.next.next.next = new Node(6);
		head1.next.next.next.next.next.next = new Node(7);

		// 0->9->8->6->7->null
		Node head2 = new Node(0);
		head2.next = new Node(9);
		head2.next.next = new Node(8);
		head2.next.next.next = head1.next.next.next.next.next; // 8->6
		System.out.println(getIntersectNode(head1, head2).value);
		

		// 1->2->3->4->5->6->7->4...
		head1 = new Node(1);
		head1.next = new Node(2);
		head1.next.next = new Node(3);
		head1.next.next.next = new Node(4);
		head1.next.next.next.next = new Node(5);
		head1.next.next.next.next.next = new Node(6);
		head1.next.next.next.next.next.next = new Node(7);
		head1.next.next.next.next.next.next = head1.next.next.next; // 7->4

		// 0->9->8->2...
		head2 = new Node(0);
		head2.next = new Node(9);
		head2.next.next = new Node(8);
		head2.next.next.next = head1.next; // 8->2
		System.out.println(getIntersectNode(head1, head2).value);
		

		// 0->9->8->6->4->5->6..
		head2 = new Node(0);
		head2.next = new Node(9);
		head2.next.next = new Node(8);
		head2.next.next.next = head1.next.next.next.next.next; // 8->6
		System.out.println(getIntersectNode(head1, head2).value);
	}
}

能不能不给单链表的头节点,只给想要删除的节点,就能做到在链表上把这个点删掉?

可以,将要删除节点的下一个节点的值覆盖要删除节点的值,然后将要删除节点的next指针指向下下个节点。

缺点:事实上,没把想要删除的节点删掉,只是把下一个节点盖到了自己身上,删掉的其实是下一个节点。

  1. 节点是服务器
  2. 节点内容很复杂,连拷贝函数和构造函数都不能调用,那么无法完成值的覆盖
  3. 【最严重】无法删除链表最后一个节点

猜你喜欢

转载自blog.csdn.net/weixin_44337241/article/details/121082233