链表问题
面试链表解题的方法论
- 对于笔试,不用太在乎空间复杂度,一切为了时间复杂度
- 对于面试,时间复杂度依然放在第一位,但是一定要找到空间最省的方法
链表面试题常用数据结构和技巧
- 使用容器(哈希表、数组等)
- 快慢指针
快慢指针
- 输入链表头节点,奇数长度返回中点,偶数长度返回上中点
- 输入链表头节点,奇数长度返回中点,偶数长度返回下中点
- 输入链表头节点,奇数长度返回中点前一个,偶数长度返回上中点前一个
- 输入链表头节点,奇数长度返回中点前一个,偶数长度返回下中点前一个
package com.harrison.six;
import java.util.ArrayList;
public class Code01_LinkedListMid {
public static class Node {
public int value;
public Node next;
public Node(int v) {
value = v;
}
}
// 奇数长度返回中点,偶数长度返回上中点
public static Node midOrUpMidNode(Node head) {
if (head == null || head.next == null || head.next.next == null) {
return head;
}
// 代表链表有三个或三个以上节点
Node slow = head.next;
Node fast = head.next.next;
while (fast.next != null && fast.next.next != null) {
slow = slow.next;
fast = fast.next.next;
}
return slow;
}
// 奇数长度返回中点,偶数长度返回下中点
public static Node midOrDownMidNode(Node head) {
if (head == null || head.next == null) {
return head;
}
Node slow = head.next;
Node fast = head.next;
while (fast.next != null && fast.next.next != null) {
slow = slow.next;
fast = fast.next.next;
}
return slow;
}
// 奇数长度返回中点前一个,偶数长度返回上中点前一个
public static Node midOrUpMidPreNode(Node head) {
if (head == null || head.next == null || head.next.next == null) {
return head;
}
// 代表链表有三个或三个以上节点
Node slow = head;
Node fast = head.next.next;
while (fast.next != null && fast.next.next != null) {
slow = slow.next;
fast = fast.next.next;
}
return slow;
}
// 奇数长度返回中点前一个,偶数长度返回下中点前一个
public static Node midOrDownMidPreNode(Node head) {
if (head == null || head.next == null) {
return null;
}
if (head.next.next == null) {
return head;
}
Node slow = head;
Node fast = head.next;
while (fast.next != null && fast.next.next != null) {
slow = slow.next;
fast = fast.next.next;
}
return slow;
}
public static Node right1(Node head) {
if (head == null) {
return null;
}
Node cur = head;
ArrayList<Node> arr = new ArrayList<>();
while (cur != null) {
arr.add(cur);
cur = cur.next;
}
return arr.get((arr.size() - 1) / 2);
}
public static Node right2(Node head) {
if (head == null) {
return null;
}
Node cur = head;
ArrayList<Node> arr = new ArrayList<>();
while (cur != null) {
arr.add(cur);
cur = cur.next;
}
return arr.get(arr.size() / 2);
}
public static Node right3(Node head) {
if (head == null || head.next == null || head.next.next == null) {
return null;
}
Node cur = head;
ArrayList<Node> arr = new ArrayList<>();
while (cur != null) {
arr.add(cur);
cur = cur.next;
}
return arr.get((arr.size() - 3) / 2);
}
public static Node right4(Node head) {
if (head == null || head.next == null) {
return null;
}
Node cur = head;
ArrayList<Node> arr = new ArrayList<>();
while (cur != null) {
arr.add(cur);
cur = cur.next;
}
return arr.get((arr.size() - 2) / 2);
}
public static void main(String[] args) {
Node test = null;
test = new Node(0);
test.next = new Node(1);
test.next.next = new Node(2);
test.next.next.next = new Node(3);
test.next.next.next.next = new Node(4);
test.next.next.next.next.next = new Node(5);
test.next.next.next.next.next.next = new Node(6);
test.next.next.next.next.next.next.next = new Node(7);
test.next.next.next.next.next.next.next.next = new Node(8);
Node ans1 = null;
Node ans2 = null;
ans1 = midOrUpMidNode(test);
ans2 = right1(test);
System.out.println(ans1 != null ? ans1.value : "无");
System.out.println(ans2 != null ? ans2.value : "无");
ans1 = midOrDownMidNode(test);
ans2 = right2(test);
System.out.println(ans1 != null ? ans1.value : "无");
System.out.println(ans2 != null ? ans2.value : "无");
ans1 = midOrUpMidPreNode(test);
ans2 = right3(test);
System.out.println(ans1 != null ? ans1.value : "无");
System.out.println(ans2 != null ? ans2.value : "无");
ans1 = midOrDownMidPreNode(test);
ans2 = right4(test);
System.out.println(ans1 != null ? ans1.value : "无");
System.out.println(ans2 != null ? ans2.value : "无");
}
}
常见面试题
给定一个单链表的头节点head,请判断该链表是否为回文结构。
- 栈方法特别简单(笔试用)
- 改原链表的方法就需要注意边界了(面试用)
package com.harrison.six;
import java.util.Stack;
public class Code02_PalindromeList {
public static class Node {
public int value;
public Node next;
public Node(int v) {
value = v;
}
}
// need n extra space
public static boolean isPalindrome1(Node head) {
Stack<Node> stack = new Stack<Node>();
Node cur = head;
while (cur != null) {
stack.push(cur);
cur = cur.next;
}
while (head != null) {
if (head.value != stack.pop().value) {
return false;
}
head = head.next;
}
return true;
}
// need n/2 extra space
public static boolean isPalindrome2(Node head) {
if (head == null || head.next == null) {
return true;
}
Node right = head.next;
Node cur = head;
while (cur.next != null && cur.next.next != null) {
right = right.next;
cur = cur.next.next;
}
Stack<Node> stack = new Stack<Node>();
while (right != null) {
stack.push(right);
right = right.next;
}
while (!stack.isEmpty()) {
if (head.value != stack.pop().value) {
return false;
}
head = head.next;
}
return true;
}
// need O(1) extra space
public static boolean isPalindrome3(Node head) {
if (head == null || head.next == null) {
return true;
}
Node n1 = head;
Node n2 = head;
while (n2.next != null && n2.next.next != null) {
// find mid node
n1 = n1.next;// n1->mid
n2 = n2.next.next;// n2-> end
}
// 奇数个n1来到中点,偶数个n1来到上中点
n2 = n1.next;// n2 -> right part first node
n1.next = null;// mid.next -> null
Node n3 = null;
while (n2 != null) {
// right part convert
n3 = n2.next;// n3-> save next node
n2.next = n1;// next of right node convert
n1 = n2;// n1 move
n2 = n3;// n2 move
}
n3 = n1;// n3-> save last node
n2 = head;// n2-> left first node
boolean res = true;
while (n1 != null && n2 != null) {
// check palindrome
if (n1.value != n2.value) {
res = false;
break;
}
n1 = n1.next;// left to mid
n2 = n2.next;// right to mid
}
n1 = n3.next;
n3.next = null;
while (n1 != null) {
// recover list
n2 = n1.next;
n1.next = n3;
n3 = n1;
n1 = n2;
}
return res;
}
public static void printLinkedList(Node node) {
System.out.print("Linked List:");
while (node != null) {
System.out.print(node.value + " ");
node = node.next;
}
System.out.println();
}
public static void main(String[] args) {
Node head = null;
printLinkedList(head);
System.out.print(isPalindrome1(head)+ " | ");
System.out.print(isPalindrome2(head)+ " | ");
System.out.print(isPalindrome3(head)+ " | ");
printLinkedList(head);
System.out.println("=======================");
head = new Node(1);
printLinkedList(head);
System.out.print(isPalindrome1(head)+ " | ");
System.out.print(isPalindrome2(head)+ " | ");
System.out.print(isPalindrome3(head)+ " | ");
printLinkedList(head);
System.out.println("=======================");
head = new Node(1);
head.next = new Node(2);
printLinkedList(head);
System.out.print(isPalindrome1(head)+ " | ");
System.out.print(isPalindrome2(head)+ " | ");
System.out.print(isPalindrome3(head)+ " | ");
printLinkedList(head);
System.out.println("=======================");
head = new Node(1);
head.next = new Node(1);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
System.out.println("=========================");
head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
System.out.println("=========================");
head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(1);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
System.out.println("=========================");
head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
head.next.next.next = new Node(1);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
System.out.println("=========================");
head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(2);
head.next.next.next = new Node(1);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
System.out.println("=========================");
head = new Node(1);
head.next = new Node(2);
head.next.next = new Node(3);
head.next.next.next = new Node(2);
head.next.next.next.next = new Node(1);
printLinkedList(head);
System.out.print(isPalindrome1(head) + " | ");
System.out.print(isPalindrome2(head) + " | ");
System.out.println(isPalindrome3(head) + " | ");
printLinkedList(head);
System.out.println("=========================");
}
}
将单向链表按某值划分成左边小、中间相等、右边大的形式
- 把链表放入数组里,在数组上做partition(笔试用)
- 分成小、中、大三部分,再把各个部分之间串起来(面试用)
package com.harrison.six;
public class Code03_SmallerEqualBigger {
public static class Node{
public int value;
public Node next;
public Node(int v) {
value=v;
}
}
public static void swap(Node [] nodeArr,int a,int b) {
Node tmpNode=nodeArr[a];
nodeArr[a]=nodeArr[b];
nodeArr[b]=tmpNode;
}
public static void arrPartition(Node[] nodeArr,int pivot) {
int small=-1;
int big=nodeArr.length;
int index=0;
while(index!=big) {
if(nodeArr[index].value<pivot) {
swap(nodeArr, ++small, index++);
}else if(nodeArr[index].value==pivot) {
index++;
}else {
swap(nodeArr, --big, index);
}
}
}
public static Node listPartition1(Node head,int pivot) {
if(head==null) {
return head;
}
Node cur=head;
int i=0;
while(cur!=null) {
i++;
cur=cur.next;
}
Node[] nodeArr=new Node[i];
i=0;
cur=head;
for(i=0; i!=nodeArr.length; i++) {
nodeArr[i]=cur;
cur=cur.next;
}
arrPartition(nodeArr, pivot);
for(i=1; i!=nodeArr.length; i++) {
nodeArr[i-1].next=nodeArr[i];
}
nodeArr[i-1]=null;
return nodeArr[0];
}
public static Node listPartition2(Node head,int pivot) {
Node sH=null;//小于区的头
Node sT=null;//小于区的尾
Node eH=null;//等于区的头
Node eT=null;//等于区的尾
Node bH=null;//大于区的头
Node bT=null;//大于区的尾
Node next=null;//save next node
while(head!=null) {
next=head.next;
head.next=null;
if(head.value<pivot) {
if(sH==null) {
sH=head;
sT=head;
}else {
sT.next=head;
sT=head;
}
}else if(head.value==pivot) {
if(eH==null) {
eH=head;
eT=head;
}else {
eT.next=head;
eT=head;
}
}else {
if(bH==null) {
bH=head;
bT=head;
}else {
bT.next=head;
bT=head;
}
}
head=next;
}
// 小于区域的尾巴,连等于区域的头,等于区域的尾巴连大于区域的头
if(sT!=null) {
//如果有小于区域
sT.next=eH;
eT=eT==null?sT:eT;//谁去连大于区域的头,谁就变成等于区域的头eT
}
if(eT!=null) {
eT.next=bH;
}
return sH!=null?sH:(eH!=null?eH:bH);
}
public static void printLinkedList(Node node) {
System.out.print("Linked List:");
while(node!=null) {
System.out.print(node.value+" ");
node=node.next;
}
System.out.println();
}
public static void main(String[] args) {
Node head1=new Node(7);
head1.next=new Node(9);
head1.next.next=new Node(1);
head1.next.next.next = new Node(8);
head1.next.next.next.next = new Node(5);
head1.next.next.next.next.next = new Node(2);
head1.next.next.next.next.next.next = new Node(5);
printLinkedList(head1);
head1=listPartition2(head1, 5);
printLinkedList(head1);
}
}
一种特殊的单链表节点类型描述如下:
class Node{
int value;
Node next;
Node rand;
Node(int val){
value=val;
}
}
rand指针是单链表节点结构中新增的指针,rand可能指向链表中的任意一个节点,也可能指向null。给定一个由Node节点类型组成的无环单链表的头节点head,请实现一个函数完成这个链表的复制,并返回复制的新链表的头节点。要求:时间复杂度O(N),额外空间复杂度O(1)
package com.harrison.six;
import java.util.HashMap;
public class Code04_CopyListWithRandom {
public static class Node {
int value;
Node next;
Node rand;
Node(int val) {
value = val;
}
}
public static Node copyRandomList1(Node head) {
// key 老节点 value 新节点
HashMap<Node, Node> map = new HashMap<Node, Node>();
Node cur = head;
while (cur != null) {
map.put(cur, new Node(cur.value));
cur = cur.next;
}
cur = head;
while (cur != null) {
// cur 老
// map.get(cur) 新
// 新.next -> cur.next克隆节点找到
map.get(cur).next = map.get(cur.next);
map.get(cur).rand = map.get(cur.rand);
cur = cur.next;
}
return map.get(head);
}
public static Node copyRandomList2(Node head) {
if (head == null) {
return null;
}
Node cur = head;
Node next = null;
// copy node and link to every node
// 1 -> 2 -> 3 -> null
// 1 -> 1' -> 2 -> 2' -> 3 -> 3'
while (cur != null) {
// cur 老 next 老的下一个
next = cur.next;
cur.next = new Node(cur.value);
cur.next.next = next;
cur = next;
}
cur = head;
Node curCopy = null;
// set curCopy node rand
while (cur != null) {
next = cur.next.next;
curCopy = cur.next;
curCopy.rand = cur.rand != null ? cur.rand.next : null;
cur = next;
}
Node res = head.next;
cur = head;
// split next方向上,把新老链表分离,不用动rand指针
while (cur != null) {
next = cur.next.next;
curCopy = cur.next;
cur.next = next;
curCopy.next = next != null ? next.next : null;
cur = next;
}
return res;
}
public static void printLinkedList(Node node) {
System.out.print("Linked List:");
while (node != null) {
System.out.print(node.value + " ");
node = node.next;
}
System.out.println();
}
public static void main(String[] args) {
Node head1=new Node(7);
head1.next=new Node(9);
head1.next.next=new Node(1);
head1.next.next.next = new Node(8);
head1.next.next.next.next = new Node(5);
head1.next.next.next.next.next = new Node(2);
head1.next.next.next.next.next.next = new Node(5);
printLinkedList(head1);
//head1=copyRandomList1(head1);
head1=copyRandomList2(head1);
printLinkedList(head1);
}
}
给定两个可能有环也可能无环的单链表,头节点head1和head2。请实现一个函数,如果两个链表相交,请返回相交的第一个节点。如果不相交,返回null。【要求】:如果两个链表长度之和为N,时间复杂度请达到O(N),额外空间复杂度请达到O(1)。
- 给你一个链表,返回第一个入环的节点
- 两个无环链表相交,返回第一个相交节点
- 两个有环链表相交,返回第一个相交节点
package com.harrison.six;
public class Code05_FindFirstIntesectNode {
public static class Node {
public int value;
public Node next;
public Node(int v) {
value = v;
}
}
// 找到链表第一个入环节点,如果无环,返回null
public static Node getLoopNode(Node head) {
if (head == null || head.next == null || head.next.next == null) {
return null;
}
// n1 慢指针 n2 快指针
Node n1 = head.next;
Node n2 = head.next.next;
while (n1 != n2) {
if (n2.next == null || n2.next.next == null) {
return null;
}
n2 = n2.next.next;
n1 = n1.next;
}
n2 = head;// n2 -> walk again form head
// n1位置不变
while (n1 != n2) {
n1 = n1.next;
n2 = n2.next;
}
return n1;
}
// 如果两个链表都无环,返回第一个相交节点,如果不相交,返回null
public static Node noLoop(Node head1, Node head2) {
if (head1 == null || head2 == null) {
return null;
}
Node cur1 = head1;
Node cur2 = head2;
int n = 0;
// n>0 cur1长 n<0 cur2长 n==0 一样长
while (cur1.next != null) {
n++;
cur1 = cur1.next;
}
while (cur2.next != null) {
n--;
cur2 = cur2.next;
}
// 结束两个while循环后,两个链表的当前节点分别来到了end1和end2
// 如果end1!=end2,说明没有共用一块内存地址,两个链表必不相交
if (cur1 != cur2) {
return null;
}
// n 链表1减去链表2的长度
cur1 = n > 0 ? head1 : head2;// 谁长,谁的头变成cur1
cur2 = cur1 == head1 ? head2 : head1;// 谁短,谁的头变成cur2
n = Math.abs(n);
/**
* 长的链表先把多的节点先走完,然后两条链表一起走 因为此时两条链表长度一样且公共部分也一样长 所以,必然会在第一个相交的节点处相遇
*/
while (n != 0) {
n--;
cur1 = cur1.next;
}
while (cur1 != cur2) {
cur1 = cur1.next;
cur2 = cur2.next;
}
return cur1;
}
// 两个有环链表,返回第一个相交节点,如果不想相交返回null
// 两个有环链表相交,则一定公用同一个环!!!
public static Node bothLoop(Node head1, Node loop1, Node head2, Node loop2) {
Node cur1 = null;
Node cur2 = null;
// 如果两个链表第一个相交节点相等,则不用考虑共同的环,且loop1和loop2成为end1和end2
if (loop1 == loop2) {
cur1 = head1;
cur2 = head2;
int n = 0;
while (cur1 != loop1) {
n++;
cur1 = cur1.next;
}
while (cur2 != loop2) {
n--;
cur2 = cur2.next;
}
if (cur1 != cur2) {
return null;
}
cur1 = n > 0 ? head1 : head2;
cur2 = cur1 == head1 ? head2 : head1;
n = Math.abs(n);
while (n != 0) {
n--;
cur1 = cur1.next;
}
while (cur1 != cur2) {
cur1 = cur1.next;
cur2 = cur2.next;
}
return cur1;
} else {
cur1 = loop1.next;
while (cur1 != loop1) {
if (cur1 == loop2) {
return loop1;
}
cur1 = cur1.next;
}
return null;
}
}
public static Node getIntersectNode(Node head1, Node head2) {
if (head1 == null || head2 == null) {
return null;
}
Node loop1 = getLoopNode(head1);
Node loop2 = getLoopNode(head2);
if (loop1 == null && loop2 == null) {
return noLoop(head1, head2);
}
if (loop1 != null && loop2 != null) {
return bothLoop(head1, loop1, head2, loop2);
}
return null;
}
public static void main(String[] args) {
// 1->2->3->4->5->6->7->null
Node head1 = new Node(1);
head1.next = new Node(2);
head1.next.next = new Node(3);
head1.next.next.next = new Node(4);
head1.next.next.next.next = new Node(5);
head1.next.next.next.next.next = new Node(6);
head1.next.next.next.next.next.next = new Node(7);
// 0->9->8->6->7->null
Node head2 = new Node(0);
head2.next = new Node(9);
head2.next.next = new Node(8);
head2.next.next.next = head1.next.next.next.next.next; // 8->6
System.out.println(getIntersectNode(head1, head2).value);
// 1->2->3->4->5->6->7->4...
head1 = new Node(1);
head1.next = new Node(2);
head1.next.next = new Node(3);
head1.next.next.next = new Node(4);
head1.next.next.next.next = new Node(5);
head1.next.next.next.next.next = new Node(6);
head1.next.next.next.next.next.next = new Node(7);
head1.next.next.next.next.next.next = head1.next.next.next; // 7->4
// 0->9->8->2...
head2 = new Node(0);
head2.next = new Node(9);
head2.next.next = new Node(8);
head2.next.next.next = head1.next; // 8->2
System.out.println(getIntersectNode(head1, head2).value);
// 0->9->8->6->4->5->6..
head2 = new Node(0);
head2.next = new Node(9);
head2.next.next = new Node(8);
head2.next.next.next = head1.next.next.next.next.next; // 8->6
System.out.println(getIntersectNode(head1, head2).value);
}
}
能不能不给单链表的头节点,只给想要删除的节点,就能做到在链表上把这个点删掉?
可以,将要删除节点的下一个节点的值覆盖要删除节点的值,然后将要删除节点的next指针指向下下个节点。
缺点:事实上,没把想要删除的节点删掉,只是把下一个节点盖到了自己身上,删掉的其实是下一个节点。
- 节点是服务器
- 节点内容很复杂,连拷贝函数和构造函数都不能调用,那么无法完成值的覆盖
- 【最严重】无法删除链表最后一个节点