STM32F4+ESP8266拟辉光钟设计(一)简介及时间获取

0 效果

话不多说,先来看看最后实现的效果(从左到右分别为时、分、秒,当时设计的时候忘了设计中间的冒号了
-_-):
效果图

在这里插入图片描述

在这里插入图片描述
画了PCB,请朋友帮忙画了solidworks打印出来框架,然后买螺丝进行拼装。

1 简介

某天逛某宝的时候突然发现了拟辉光钟,当时就觉得挺好看的,但一看价格就直接劝退了(这里放了两张价格)在这里插入图片描述在这里插入图片描述
于是我产生了自己动手做的想法。现在网上搜了一下拟辉光钟的工作原理:

拟辉光钟是利用光线在亚克力板上的划痕处产生光线折射,使得划痕处的光线较亮,配置以随时间而变的灯光,达到类似于辉光钟的效果。

在搜索了一些资料后,我把我的工作分成了两个部分,第一个部分就是时间的获取,第二个部分是灯光的控制。下面主要就这两个大的模块介绍下具体怎么实现的。

拟辉光钟
时间获取
灯光控制

2 STM32F4+ESP8266获取网络时间

我之前的项目中一直在用STM32,比较熟悉,所以这次依然使用了STM32作为主控板。获取时间的大体思路是利用ESP8266WIFI模块能够连网的功能,在上电后能够通过MCU控制ESP8266连接到网络并发送相应的API请求,获得当前时间,之后把当前时间赋值到RTC时钟,实现自走的功能。

2.1 ESP8266的联网和API请求

首先先简要介绍一下ESP8266模块,在安可信官网上有此模块的详细介绍,这里放一个链接:
安可信,在它用户文档里对该模块的介绍是这样的:

ESP8266是一款超低功耗的UART-WiFi 透传模块,拥有业内极富竞争力的封装尺寸和超低能耗技术,专为移动设备和物联网应用设计,可将用户的物理设备连接到Wi-Fi 无线网络上,进行互联网或局域网通信,实现联网功能。

此模块拥有独立控制能力,可以作为主控芯片使用,也可以作为其他控制器的联网芯片,使主控制器拥有联网功能。正点原子封装的ESP8266
模块联网的方式是通过其RXDTXD分别与串口的TX端和RX端相连,通过串口通信发送AT指令来控制ESP8266实现联网。有关模块的STA、AP、STA+AP模式还有AT指令集可以参考以下链接:
ESP8266 AT指令集https://blog.csdn.net/qq_45104817/article/details/105834987
模块教程:https://blog.csdn.net/mbs520/article/details/109572070
在本项目通过使用STM32上的USART6给8266发送以下的AT指令实现了联网功能:

1.设置工作模式:

AT+CWMODE=1 //设置模式,1为STA模式(从机)

2.重启: 重启可以保证模式能够转换成功

AT+RST

3.联网:(在这里遇到了一个小问题,就是我在学校连校园网的话需要通过用户认证,但单纯的用这个指令不能联网成功。网上说可以通过串口发送响应的完成认证的请求头,但后来我通过笔记本连网后再开热点解决了):

AT+CWJAP="name","password" //name为你想连的WIFI名称,password为你的WIFI密码

4.设置连接方式 只有将连接方式设置为单路连接才能启用TCP/IP

AT+CIPMUX=0

TCP/IP是一种网络通信协议,可以理解为设备连接到目标网络后,通过这个特有的双方都理解的语言才可以实现数据通信,详细的介绍可以参考:https://zhuanlan.zhihu.com/p/33889997
5.连接到目标站点 第4步设置了单路连接,现在就可以启用TCP连接到API站点获取数据了!

AT+CIPSTART="TCP","quan.suning.com",80 //协议形式;站点IP或网址;端口号(指定一个没有被占用的即可)

这里quan.suning.com即为我们要用的API,连接到该网络后,可以通过发送标准形式的请求头来获取当前时间。
6.开启透传 开启透传模式,为传送报头做准备

AT+CIPMODE=1

7.发送报头,接收数据

res=esp8266_send_data("GET http://quan.suning.com/getSysTime.do HTTP/1.1\r\nHost: quan.suning.com\r\n\r\n",50);

返回来的数据如下:

receive:HTTP/1.1 200 OK
Date: Sat, 16 Oct 2021 10:31:07 GMT
Content-Type: text/html;charset=UTF-8
Content-Length: 62
Connection: keep-alive
Server: styx
Set-Cookie: tradeLdc=NJGX_YG;Expires=Sat, 16-Oct-21 22:31:07 GMT
Strict-Transport-Security: max-age=300
Cache-Control: no-cache,no-store,max-age=0,s-maxage=0
Access-Control-Allow-Credentials: true
X-Ser: BC98_dx-lt-yd-jiangsu-zhenjiang-3-cache-16, BC204_lt-shanxi-taiyuan-6-cache-4
X-Cache: MISS from BC204_lt-shanxi-taiyuan-6-cache-4(baishan)
{
    
    "sysTime2":"2021-10-16 18:31:07","sysTime1":"20211016183107"}

我们的主要目的是获取当前时间,所以返回来的数据中大部分是没有用的,通过观察发现我们只需要提取出“sysTime2”后面跟的时间即可,所以我们需要一些算法来把时间提取出来。我的思路就是先通过字符串查找函数strstr找到"sysTime2"所在位置的指针,再根据时、分、秒相对于指针的偏移量依次把数据提取出来,这里我把我的代码放在下面,当然大家也可以设置更加高效的算法:

#define HOURS_ADD_DRES 22  //小时相对于data_pt指针的偏移量是22
char *data_pt=NULL;
	while(!data_pt){
    
    
	res=esp8266_send_data("GET http://quan.suning.com/getSysTime.do HTTP/1.1\r\nHost: quan.suning.com\r\n\r\n",50);
	data_pt = strstr((const char *) res,(const char *)"sysTime2");//在返回数据中找sysTime2
	}
	printf("GET TIME SUCCESS!\r\n");//如果找到了,data_pt非空,退出循环,获取时间成功
	int k=0;
	char time[10];
  	char *hour_string;//存放时间的字符串
	int hour,second,minute=0;
    hour_string = data_pt + HOURS_ADD_DRES;  //hour_string指针指向时-分-秒时间的小时位第一位,精准锁定
	for(i=0;i<=7;i++)//把各位的数据提取出来
	{
    
    
		time[k]=*hour_string;
	  hour_string++;k++;
	}
	time[8]='\0';
	hour=(time[0]-48)*10+(time[1]-48);
	minute=(time[3]-48)*10+(time[4]-48);
	second=(time[6]-48)*10+(time[7]-48);//ASCII码转换成数字,方便后续
	printf("time:%s",time);//把当前获取到的时间打印到串口

可以看到串口输出了正确的值,获取时间成功了!
请添加图片描述

2.2 RTC时钟的设置

在这之前我们已经通过ESP8266联网实现了当前时间的获取,但如此这样一直获取时间显然是不现实的,一方面每次发送请求有一定的失败概率,如果获取时间失败那么时间的显示就会不连续。另一方面网站面临多次重复的请求会对你的IP地址进行屏蔽来防止恶意攻击。此外如此频繁的请求也会消耗太多的资源放在请求上,导致程序的效率不高。通过了解我发现可以通过芯片内部的RTC时钟来实现时间的自走功能。
有关RTC时钟的具体实现与详解可以参考这篇RCT详解
通过配置RTC,将ESP8266模块获取的时间写入RTC,之后可以利用RTC的秒中断或者根据RTC的计数器变动来刷新当前时间值,在灯光上进行不同的显示。

RTC_Set_Time(hour,minute,second,1);

此代码实现了随着时间的变化刷新显示,同时,也可以采用秒中断的方法(后者更加精确

	RTC_TimeTypeDef RTC_TimeTypeInitStructure;
	RTC_GetTime(RTC_Format_BIN,&RTC_TimeTypeInitStructure);
	flags0=RTC_TimeTypeInitStructure.RTC_Seconds%10;
	flags1=RTC_TimeTypeInitStructure.RTC_Seconds/10;
		
	flagm0=RTC_TimeTypeInitStructure.RTC_Minutes%10;
	flagm1=RTC_TimeTypeInitStructure.RTC_Minutes/10;
	
	flagh0=RTC_TimeTypeInitStructure.RTC_Hours%10;
	flagh1=RTC_TimeTypeInitStructure.RTC_Hours/10;
	
	if(flags0!=befores0){
    
    
		ws281x_showNum(RTC_TimeTypeInitStructure.RTC_Seconds%10,5,1);
		befores0=flags0;}
	if(flags1!=befores1){
    
    
		ws281x_showNum(RTC_TimeTypeInitStructure.RTC_Seconds/10,4,0);
		befores1=flags1;}
	
	if(flagm0!=beforem0){
    
    
		ws281x_showNum(RTC_TimeTypeInitStructure.RTC_Minutes%10,3,1);
		beforem0=flagm0;}
	if(flagm1!=beforem1){
    
    
		ws281x_showNum(RTC_TimeTypeInitStructure.RTC_Minutes/10,2,0);
		beforem1=flagm1;}
	
	if(flagh0!=beforeh0){
    
    
		ws281x_showNum(RTC_TimeTypeInitStructure.RTC_Hours%10,1,1);
		beforeh0=flagh0;}
	if(flagh1!=beforeh1){
    
    
		ws281x_showNum(RTC_TimeTypeInitStructure.RTC_Hours/10,0,0);
		beforeh1=flagh1;}

在下一篇文章中会具体介绍灯光控制模块!谢谢大家的支持!

猜你喜欢

转载自blog.csdn.net/eric_accept/article/details/119839343

相关文章