aim_index='AMO'
p_values_limit=0.1
p_values_limit1=0.05
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib import rcParams
import matplotlib as mpl
mpl.rcParams["font.family"] = 'Times New Roman'
mpl.rcParams["mathtext.fontset"] = 'cm'
mpl.rcParams["font.size"] = 15
mpl.rcParams["axes.linewidth"] = 1
data=pd.read_excel('adelie_cor_plot.xlsx')
data.sort_values("region",inplace=True)
p_values=pd.read_excel('adelie_pvalues_plot.xlsx')
p_values.sort_values("region",inplace=True)
x=np.array(list(range(1,len(data)+1)))
y1=np.array(data[aim_index])
y2=np.array(data[aim_index])
y3=np.array(data[aim_index])
y_total=np.array(data[aim_index])
region=np.array(data['region'])
y1[region!=1]=0
y2[region!=2]=0
y3[region!=3]=0
plt.figure(figsize=(12,5))
sns.set(font='Times New Roman')
plt.bar(x,y1,label='AP')
plt.bar(x,y2,label='RS')
plt.bar(x,y3,label='EA')
plt.tick_params(labelsize=15)
plt.yticks(np.linspace(-0.8,0.8,9))
plt.ylim(-1,1)
plt.legend(fontsize=15)
plt.xlabel('Site',fontsize=16)
plt.ylabel('Correlation coefficient',fontsize=16)
plt.title('Correlation between '+aim_index+' and breeding pairs' ,fontsize=25)
y_p=np.array(p_values[aim_index])
x_loc=x[y_p<p_values_limit]
y_loc=y_total[y_p<p_values_limit]
for i in range(len(x_loc)):
loc_h=x_loc[i]-0.25
if y_loc[i]<0:
loc_v=y_loc[i]-0.03-0.06
else:
loc_v=y_loc[i]+0.04-0.06
plt.text(loc_h,loc_v,'*',fontsize=16)
y_p=np.array(p_values[aim_index])
x_loc=x[y_p<p_values_limit1]
y_loc=y_total[y_p<p_values_limit1]
for i in range(len(x_loc)):
loc_h=x_loc[i]-0.25
if y_loc[i]<0:
loc_v=y_loc[i]-0.03-0.06
else:
loc_v=y_loc[i]+0.04-0.06
plt.text(loc_h,loc_v,'*',fontsize=16,color='red')
