word2vec内容链接
word2vec代码内容如下:
import numpy as np
from collections import defaultdict
class word2vec():
def __init__(self):
self.n = settings['n']
self.lr = settings['learning_rate']
self.epochs = settings['epochs']
self.window = settings['window_size']
def generate_training_data(self, settings, corpus):
"""
得到训练数据
"""
#defaultdict(int) 一个字典,当所访问的键不存在时,用int类型实例化一个默认值
word_counts = defaultdict(int)
#遍历语料库corpus
for row in corpus:
for word in row:
#统计每个单词出现的次数
word_counts[word] += 1
# 词汇表的长度
self.v_count = len(word_counts.keys())
# 在词汇表中的单词组成的列表
self.words_list = list(word_counts.keys())
# 以词汇表中单词为key,索引为value的字典数据
self.word_index = dict((word, i) for i, word in enumerate(self.words_list))
#以索引为key,以词汇表中单词为value的字典数据
self.index_word = dict((i, word) for i, word in enumerate(self.words_list))
training_data = []
for sentence in corpus:
sent_len = len(sentence)
for i, word in enumerate(sentence):
w_target = self.word2onehot(sentence[i])
w_context = []
for j in range(i - self.window, i + self.window):
if j != i and j <= sent_len - 1 and j >= 0:
w_context.append(self.word2onehot(sentence[j]))
training_data.append([w_target, w_context])
return np.array(training_data)
def word2onehot(self, word):
#将词用onehot编码
word_vec = [0 for i in range(0, self.v_count)]
word_index = self.word_index[word]
word_vec[word_index] = 1
return word_vec
def train(self, training_data):
#随机化参数w1,w2
self.w1 = np.random.uniform(-1, 1, (self.v_count, self.n))
self.w2 = np.random.uniform(-1, 1, (self.n, self.v_count))
for i in range(self.epochs):
self.loss = 0
# w_t 是表示目标词的one-hot向量
#w_t -> w_target,w_c ->w_context
for w_t, w_c in training_data:
#前向传播
y_pred, h, u = self.forward(w_t)
#计算误差
EI = np.sum([np.subtract(y_pred, word) for word in w_c], axis=0)
#反向传播,更新参数
self.backprop(EI, h, w_t)
#计算总损失
self.loss += -np.sum([u[word.index(1)] for word in w_c]) + len(w_c) * np.log(np.sum(np.exp(u)))
print('Epoch:', i, "Loss:", self.loss)
def forward(self, x):
"""
前向传播
"""
h = np.dot(self.w1.T, x)
u = np.dot(self.w2.T, h)
y_c = self.softmax(u)
return y_c, h, u
def softmax(self, x):
"""
"""
e_x = np.exp(x - np.max(x))
return e_x / np.sum(e_x)
def backprop(self, e, h, x):
d1_dw2 = np.outer(h, e)
d1_dw1 = np.outer(x, np.dot(self.w2, e.T))
self.w1 = self.w1 - (self.lr * d1_dw1)
self.w2 = self.w2 - (self.lr * d1_dw2)
def word_vec(self, word):
"""
获取词向量
通过获取词的索引直接在权重向量中找
"""
w_index = self.word_index[word]
v_w = self.w1[w_index]
return v_w
def vec_sim(self, word, top_n):
"""
找相似的词
"""
v_w1 = self.word_vec(word)
word_sim = {
}
for i in range(self.v_count):
v_w2 = self.w1[i]
theta_sum = np.dot(v_w1, v_w2)
#np.linalg.norm(v_w1) 求范数 默认为2范数,即平方和的二次开方
theta_den = np.linalg.norm(v_w1) * np.linalg.norm(v_w2)
theta = theta_sum / theta_den
word = self.index_word[i]
word_sim[word] = theta
words_sorted = sorted(word_sim.items(), key=lambda kv: kv[1], reverse=True)
for word, sim in words_sorted[:top_n]:
print(word, sim)
def get_w(self):
w1 = self.w1
return w1
#超参数
settings = {
'window_size': 2, #窗口尺寸 m
#单词嵌入(word embedding)的维度,维度也是隐藏层的大小。
'n': 10,
'epochs': 50, #表示遍历整个样本的次数。在每个epoch中,我们循环通过一遍训练集的样本。
'learning_rate':0.01 #学习率
}
#数据准备
text = "natural language processing and machine learning is fun and exciting"
#按照单词间的空格对我们的语料库进行分词
corpus = [[word.lower() for word in text.split()]]
print(corpus)
#初始化一个word2vec对象
w2v = word2vec()
training_data = w2v.generate_training_data(settings,corpus)
#训练
w2v.train(training_data)
# 获取词的向量
word = "machine"
vec = w2v.word_vec(word)
print(word, vec)
# 找相似的词
w2v.vec_sim("machine", 3)
原句为’natural language processing and machine learning is fun and exciting’
这里统计完词频、词的索引等参数之后,获得原来数据对应的list的内容
[
['natural', ['language']], ['language', ['natural', 'processing']],
['processing', ['natural', 'language', 'and']],
['and', ['language', 'processing', 'machine']],
['machine', ['processing', 'and', 'learning']],
['learning', ['and', 'machine', 'is']],
['is', ['machine', 'learning', 'fun']],
['fun', ['learning', 'is', 'and']],
['and', ['is', 'fun', 'exciting']],
['exciting', ['fun', 'and']]
]
调用
training_data = w2v.generate_training_data(settings,corpus)
返回来的training_data的数据为
training_data =
[[list([1, 0, 0, 0, 0, 0, 0, 0, 0]) list([[0, 1, 0, 0, 0, 0, 0, 0, 0]])]
[list([0, 1, 0, 0, 0, 0, 0, 0, 0])
list([[1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0]])]
..........
[list([0, 0, 0, 0, 0, 0, 0, 0, 1])
list([[0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0]])]]
接下来进入train训练的代码过程
self.w1 = np.random.uniform(-1,1,(self.v_count,self.n))
self.w2 = np.random.uniform(-1,1,(self.n,self.v_count))
这里的self.v_count = 9,self.n = 10,因此构成了self.w1为一个(9,10)的(-1,1)的矩阵,self.w2为一个(10,9)的(-1,1)的矩阵
self.w1 =
[[-0.88093613 0.44287707 -0.20015634 -0.17542098 -0.18688373 0.25044748
0.86296623 0.85030189 0.78452837 -0.18417995]
......
[-0.52173874 0.2372753 -0.06543664 0.18024424 0.28042927 0.34655803
0.06426065 0.79247053 -0.60444507 0.45783363]]
接下来查看反向传播的操作
for w_t,w_c in training_data:
y_pred,h,u = self.forward(w_t)
......
查看反向传播的研读过程
def forward(self, x):
"""
前向传播
"""
h = np.dot(self.w1.T, x)
u = np.dot(self.w2.T, h)
y_c = self.softmax(u)
return y_c, h, u
整理出来公式
h = self.w1.T*x
u = self.w2.T*(self.w1.T*h)
y_c = softmax(self.w2.T*(self.w1.T*h))
然后计算所有单词的相应的误差
EI = np.sum([np.subtract(y_pred, word) for word in w_c], axis=0)
这步类似于交叉熵损失函数的内容
接下来代码进行反向传播、更新参数的操作,这里重点看一下这个的过程
self.backprop(EI,h,w_t)
进入backprop函数之中
def backprop(self,e,h,x):
d1_dw2 = np.outer(h,e)
d1_dw1 = np.outer(x,np.dot(self.w1.T,e.T))
self.w1 = self.w1 - (self.lr*d1_dw1)
self.w2 = self.w2 - (self.lr*d1_dw2)
这里解析一下这里的d1_dw2和d1_dw1的计算得到的结果
首先我们将e、h、x的原来构成的值提取出来
e = E I = s o f t m a x ( w 2 ∗ ( w 1 ∗ w o r d ) ) e = EI = softmax(w_{2}*(w_{1}*word)) e=EI=softmax(w2∗(w1∗word))
h = w 2 ∗ ( w 1 ∗ w o r d ) h = w_{2}*(w_{1}*word) h=w2∗(w1∗word)
x = w o r d x = word x=word
所以对应的值为
d 1 d w 1 = w o r d ∗ ( w 2 ∗ s o f t m a x l o s s ) = s o f t m a x l o s s ∗ w 2 ∗ w o r d d_{1}dw_{1} = word*(w_{2}*softmaxloss) = softmaxloss*w_{2}*word d1dw1=word∗(w2∗softmaxloss)=softmaxloss∗w2∗word
d 1 d w 2 = s o f t m a x l o s s ∗ ( w 2 T ∗ ( w 1 T ∗ w o r d ) ) = s o f t m a x l o s s ∗ w 2 T ∗ w o r d ∗ w 1 T d_{1}dw_{2} = softmaxloss*(w_{2}^{T}*(w_{1}^{T}*word)) = softmaxloss * w_{2}^{T}*word*w_{1}^{T} d1dw2=softmaxloss∗(w2T∗(w1T∗word))=softmaxloss∗w2T∗word∗w1T
个人认为这里的求便导然后反向传播写的不对
感觉应该为下面的过程(一个对w1.T偏导只剩w2,一个对w2.T偏导只剩w1)
def backprop(self, e, h, x):
#d1_dw2 = np.outer(h, e)
d1_dw2 = np.outer(x, np.dot(self.w1.T,e.T)).T
d1_dw1 = np.outer(x, np.dot(self.w2, e.T))
#d1_dw1 = np.outer(x,np.dot(self.w1.T,e.T))
self.w1 = self.w1 - (self.lr * d1_dw1)
self.w2 = self.w2 - (self.lr * d1_dw2)
本质上就是给出一个单词的embedding和一个w1_t以及w2_t,周边的单词通过乘上w1_t和w2_t能够计算到中间的词语上去
最后解析一下计算单词的相似度内容
def vec_sim(self, word, top_n):
"""
找相似的词
"""
v_w1 = self.word_vec(word)
word_sim = {
}
for i in range(self.v_count):
v_w2 = self.w1[i]
theta_sum = np.dot(v_w1, v_w2)
#np.linalg.norm(v_w1) 求范数 默认为2范数,即平方和的二次开方
theta_den = np.linalg.norm(v_w1) * np.linalg.norm(v_w2)
theta = theta_sum / theta_den
word = self.index_word[i]
word_sim[word] = theta
words_sorted = sorted(word_sim.items(), key=lambda kv: kv[1], reverse=True)
for word, sim in words_sorted[:top_n]:
print(word, sim)
从词典中挨个找出单词来,调出embedding,然后不断地乘上v_w1或者v_w2,最后计算单词的相似度并进行排序得到最终的结果