【Conic】最优性条件与对偶(2)

广义Lagrange对偶

广义Lagrange考虑将优化问题区域扩张为 G \mathcal{G} G,对于 λ ∈ R + m \lambda\in\mathbb{R}_+^m λR+m的广义Lagrange函数为
L ( x , λ ) = f ( x ) + ∑ i = 1 m λ i g i ( x ) , x ∈ G L(x, \lambda)=f(x)+\sum_{i=1}^m\lambda_ig_i(x), x\in\mathcal{G} L(x,λ)=f(x)+i=1mλigi(x),xG
F ≠ ∅ \mathcal{F}\neq\empty F=时,由广义Lagrange函数可以发现
L ( x , λ ) ≤ f ( x ) , ∀ x ∈ F L(x, \lambda)\leq f(x), \forall x\in\mathcal{F} L(x,λ)f(x),xF
所以
min ⁡ x ∈ G L ( x , λ ) ≤ f ( x ) , ∀ x ∈ F , ∀ λ ∈ R + m max ⁡ λ ∈ R + m min ⁡ x ∈ G L ( x , λ ) ≤ f ( x ) , ∀ x ∈ F max ⁡ λ min ⁡ x ∈ G L ( x , λ ) ≤ min ⁡ x ∈ F f ( x ) (1) \min_{x\in\mathcal{G}}L(x, \lambda)\leq f(x), \forall x\in\mathcal{F}, \forall\lambda \in \mathbb{R}_+^m\\ \max_{\lambda\in\mathbb{R}_+^m}\min_{x\in\mathcal{G}} L(x, \lambda)\leq f(x), \forall x\in\mathcal{F}\\ \max_{\lambda}\min_{x\in\mathcal{G}}L(x, \lambda)\leq \min_{x\in\mathcal{F}}f(x)\tag{1} xGminL(x,λ)f(x),xF,λR+mλR+mmaxxGminL(x,λ)f(x),xFλmaxxGminL(x,λ)xFminf(x)(1)
广义Lagrange对偶具有如下性质:

  1. 对偶性质: v p ≥ v d ( G ) , ∀ F ⊆ G v_p\geq v_d(\mathcal{G}), \forall \mathcal{F}\subseteq \mathcal{G} vpvd(G),FG.
  2. 逼近性质:设 F ⊆ G 1 ⊆ G 2 \mathcal{F}\subseteq \mathcal{G}_1\subseteq\mathcal{G}_2 FG1G2,则 v p ≥ v d ( G 1 ) ≥ v d ( G 2 ) v_p\geq v_d(\mathcal{G}_1)\geq v_d(\mathcal{G}_2) vpvd(G1)vd(G2).
  3. 强对偶性质:设 F = G \mathcal{F}=\mathcal{G} F=G,则 v p = v d ( G ) v_p=v_d(\mathcal{G}) vp=vd(G).

问题 ( 1 ) (1) (1)可以使用如下的等价优化表示
max ⁡ t s . t . L ( x , λ ) ≥ t ∀ x ∈ G λ ∈ R + m , t ∈ R \begin{aligned} \max \quad&t\\ s.t. \quad& L(x, \lambda)\geq t\quad \forall x\in\mathcal{G}\\ &\lambda\in\mathbb{R}_+^m, t\in\mathbb{R} \end{aligned} maxs.t.tL(x,λ)txGλR+m,tR
G \mathcal{G} G包含无穷多元素时,这是一个半无限规划(semi-infinite programming)。对于存在等式约束的问题,可以将等式约束改写如下
h i ( x ) ≤ 0 h i ( x ) ≥ 0 h_i(x)\leq 0\\ h_i(x)\geq 0 hi(x)0hi(x)0

共轭对偶

可以将原问题表示为
v p = min ⁡ f ( x ) s . t . x ∈ F = C ∩ D \begin{aligned} v_p=\min &f(x)\\ s.t.&x\in\mathcal{F}=\mathcal{C}\cap\mathcal{D} \end{aligned} vp=mins.t.f(x)xF=CD
对于含有不等式约束的非线性规划
C = { x ∈ R n ∣ g i ( x ) ≤ 0 , i = 1 , 2 , … , m } \mathcal{C}=\{x\in\mathbb{R}^n\mid g_i(x)\leq 0, i=1,2,\dots, m\} C={ xRngi(x)0,i=1,2,,m}
为约束集合, D = R n \mathcal{D}=\mathbb{R}^n D=Rn为定义域,考虑如下映射
φ : x ∈ D → ( − g 1 ( x ) , … , − g m ( x ) , f ( x ) ) T ∈ R m + 1 \varphi:x\in\mathcal{D}\to(-g_1(x), \dots, -g_m(x), f(x))^T\in\mathbb{R}^{m+1} φ:xD(g1(x),,gm(x),f(x))TRm+1

X = { u ∈ R m + 1 ∣ u = φ ( x ) , x ∈ D } \mathcal{X}=\{u\in\mathbb{R}^{m+1}\mid u=\varphi(x), x\in\mathcal{D}\} X={ uRm+1u=φ(x),xD}
原问题的约束集合表示为
K = { u ∈ R m + 1 ∣ u i ≥ 0 , i = 1 , 2 , … , m } \mathcal{K}=\{u\in\mathbb{R}^{m+1}\mid u_i\geq 0, i=1,2,\dots, m\} K={ uRm+1ui0,i=1,2,,m}
建立优化问题
v p ′ = min ⁡ u m + 1 s . t . u ∈ X ∩ K v'_p=\min u_{m+1}\\ s.t.\quad u\in\mathcal{X}\cap\mathcal{K} vp=minum+1s.t.uXK
其中 u ∈ R m + 1 u\in\mathbb{R}^{m+1} uRm+1为决策变量。
可以发现 K \mathcal{K} K是一个锥,且
K ∗ = { λ ∈ R m + 1 ∣ λ i ≥ 0 , i = 1 , 2 , … , m ; λ m + 1 = 0 } \mathcal{K}^*=\{\lambda\in\mathbb{R}^{m+1}\mid\lambda_i\geq 0, i=1,2,\dots, m;\lambda_{m+1}=0\} K={ λRm+1λi0,i=1,2,,m;λm+1=0}
对于给定的 λ = ( λ 1 , … , λ m , λ m + 1 ) T ≥ 0 \lambda=(\lambda_1, \dots, \lambda_m, \lambda_{m+1})^T\geq 0 λ=(λ1,,λm,λm+1)T0 λ m + 1 = 0 \lambda_{m+1}=0 λm+1=0,广义Lagrange松弛对偶第一阶段问题在 X \mathcal{X} X上有
v ( λ 1 , … , λ m , X ) = min ⁡ u ∈ X { ( λ 1 , … , λ m , 0 ) ( − u 1 , … , − u m , u m + 1 ) T + u m + 1 } = − max ⁡ u ∈ X { ( λ 1 , … , λ m , 0 ) ( u 1 , … u m , u m + 1 ) T − u m + 1 } \begin{aligned} &v(\lambda_1, \dots, \lambda_m, \mathcal{X})\\ =&\min_{u\in\mathcal{X}}\{(\lambda_1, \dots, \lambda_m, 0)(-u_1, \dots, -u_m, u_{m+1})^T+u_{m+1}\}\\ =&-\max_{u\in\mathcal{X}}\{(\lambda_1, \dots, \lambda_m, 0)(u_1, \dots u_m, u_{m+1})^T-u_{m+1}\} \end{aligned} ==v(λ1,,λm,X)uXmin{ (λ1,,λm,0)(u1,,um,um+1)T+um+1}uXmax{ (λ1,,λm,0)(u1,um,um+1)Tum+1}

Y = { λ ∈ R m + 1 ∣ λ = ( λ 1 , … , λ m , λ m + 1 ) T , − v ( λ 1 , … , λ m , X ) < + ∞ } \mathcal{Y}=\{\lambda\in\mathbb{R}^{m+1}\mid \lambda=(\lambda_1, \dots, \lambda_m, \lambda_{m+1})^T, -v(\lambda_1, \dots, \lambda_m, \mathcal{X})<+\infty\} Y={ λRm+1λ=(λ1,,λm,λm+1)T,v(λ1,,λm,X)<+}
可以看出
− v ( λ 1 , … , λ m , X ) = max ⁡ u ∈ X { λ T u − u m + 1 } -v(\lambda_1, \dots, \lambda_m, \mathcal{X})=\max_{u\in\mathcal{X}}\{\lambda^Tu-u_{m+1}\} v(λ1,,λm,X)=uXmax{ λTuum+1}
反向考虑:将 u u u看做Lagrange乘子, λ \lambda λ是函数表达式, v ( λ 1 , … , λ m , X ) v(\lambda_1, \dots, \lambda_m, \mathcal{X}) v(λ1,,λm,X)是关于 λ \lambda λ的函数,则上述优化问题为
min ⁡ − v ( λ 1 , … , λ m , X ) s . t . x ∈ X ∩ K (2) \begin{aligned} \min &-v(\lambda_1, \dots, \lambda_m, \mathcal{X})\\ s.t.&x\in\mathcal{X}\cap\mathcal{K} \end{aligned}\tag{2} mins.t.v(λ1,,λm,X)xXK(2)
f : X f:\mathcal{X} f:X的共轭函数为 h : Y h:\mathcal{Y} h:Y且满足
h ( y ) = max ⁡ x ∈ X { y ⋅ x − f ( x ) } h(y)=\max_{x\in\mathcal{X}}\{y\cdot x-f(x)\} h(y)=xXmax{ yxf(x)}
共轭对偶研究的优化模型为
v p = min ⁡ f ( x ) s . t . x ∈ X ∩ K (3) v_p=\min f(x)\\ s.t. \quad x\in\mathcal{X}\cap\mathcal{K}\tag{3} vp=minf(x)s.t.xXK(3)
共轭对偶为
v d = min ⁡ h ( y ) s . t . y ∈ Y ∩ K ∗ (4) v_d=\min h(y)\\ s.t.\quad y\in\mathcal{Y}\cap \mathcal{K}^*\tag{4} vd=minh(y)s.t.yYK(4)
设原问题 ( 3 ) (3) (3)和共轭对偶问题 ( 4 ) (4) (4)都是可行的,当 x ∈ X ∩ Y x\in\mathcal{X}\cap\mathcal{Y} xXY y ∈ Y ∩ K ∗ y\in\mathcal{Y}\cap\mathcal{K}^* yYK,则有
0 ≤ x ⋅ y ≤ f ( x ) + h ( y ) 0\leq x\cdot y\leq f(x)+h(y) 0xyf(x)+h(y)
f ( x ) + h ( y ) = 0 f(x)+h(y)=0 f(x)+h(y)=0的充分必要条件为
x ⋅ y = 0 , y ∈ ∂ f ( x ) x\cdot y=0, y\in\partial f(x) xy=0,yf(x)
当以上等式成立时, x x x y y y分别为原问题和共轭对偶问题的最优解。

锥优化模型及最优性

锥线性优化的标准形式(LCoP)可以表示为
v L C o P = min ⁡ c ⋅ x s . t . a i ⋅ x = b i i = 1 , 2 , … , m x ∈ K \begin{aligned} v_{LCoP}=\min & c\cdot x\\ s.t. & a^i\cdot x=b_i\quad i=1,2,\dots, m\\ &x\in\mathcal{K} \end{aligned} vLCoP=mins.t.cxaix=bii=1,2,,mxK
作如下变量替换
X = { u ∈ R m + 1 ∣ u i = a i ⋅ x − b i , i = 1 , … , m ; u m + 1 = c ⋅ x , x ∈ K } K 0 = \begin{aligned} &\mathcal{X}=\{u\in\mathbb{R}^{m+1}\mid u_i=a^i\cdot x-b_i, i=1,\dots,m; u_{m+1}=c\cdot x, x\in\mathcal{K}\}\\ &\mathcal{K}_0= \end{aligned} X={ uRm+1ui=aixbi,i=1,,m;um+1=cx,xK}K0=
计算 f ( u ) f(u) f(u)的共轭函数
h ( w ) = max ⁡ u ∈ X { u T w − f ( u ) } = max ⁡ x ∈ K { − ∑ i = 1 m w i b i + [ ∑ i = 1 m w i a i + ( w m + 1 − 1 ) c ] ⋅ x } h(w)=\max_{u\in\mathcal{X}}\{u^Tw-f(u)\}=\max_{x\in\mathcal{K}}\{-\sum_{i=1}^mw_ib_i+[\sum_{i=1}^mw_ia^i+(w_{m+1}-1)c]\cdot x\} h(w)=uXmax{ uTwf(u)}=xKmax{ i=1mwibi+[i=1mwiai+(wm+11)c]x}
h ( w ) < + ∞ h(w)<+\infty h(w)<+的约束下要求
[ ∑ i = 1 m w i a i + ( w m + 1 − 1 ) c ] ⋅ x ≤ 0 ∀ x ∈ K [\sum_{i=1}^mw_ia^i+(w_{m+1}-1)c]\cdot x\leq 0\quad \forall x\in \mathcal{K} [i=1mwiai+(wm+11)c]x0xK

− ∑ i = 1 m w i a i + ( w m + 1 − 1 ) c ∈ K ∗ -\sum_{i=1}^mw_ia^i+(w_{m+1}-1)c\in\mathcal{K}^* i=1mwiai+(wm+11)cK
因此共轭对偶函数为
h ( w ) = − ∑ i = 1 m w i b i h(w)=-\sum_{i=1}^mw_ib_i h(w)=i=1mwibi
定义域为
Y = { w ∈ R m + 1 ∣ − ∑ i = 1 m w i a i + ( w m + 1 − 1 ) c ∈ K ∗ } \mathcal{Y}=\{w\in\mathbb{R}^{m+1}\mid -\sum_{i=1}^mw_ia^i+(w_{m+1}-1)c\in\mathcal{K}^*\} Y={ wRm+1i=1mwiai+(wm+11)cK}
整理得到LCoD
v L C o D = max ⁡ b T y s . t . ∑ i = 1 m y i a i + s = c s ∈ K ∗ \begin{aligned} v_{LCoD}=\max &b^Ty\\ s.t. & \sum_{i=1}^my_ia^i+s=c\\ &s\in\mathcal{K}^* \end{aligned} vLCoD=maxs.t.bTyi=1myiai+s=csK

猜你喜欢

转载自blog.csdn.net/qq_18822147/article/details/114369521