DataScience:基于GiveMeSomeCredit数据集利用特征工程处理、逻辑回归LoR算法实现构建风控中的金融评分卡模型

DataScience:基于GiveMeSomeCredit数据集利用特征工程处理、逻辑回归LoR算法实现构建风控中的金融评分卡模型

目录

基于GiveMeSomeCredit数据集利用特征工程处理、逻辑回归LoR算法实现构建风控中的金融评分卡模型

1、加载数据集

查看数据集的摘要信息

2、特征工程:数据分析与处理

# 2.1、缺失值分析及处理

# 2.2、单个字段逐个分析

分析label字段:统计SeriousDlqin2yrs类别及其个数统计

 分析age字段

 分析3个类似字段—NumberOfTimes90DaysLate、NumberOfTime60

分析单个字段—DebtRatio及与MonthlyIncome、SeriousDlqin2yrs关系

分析单个字段—MonthlyIncome

 分析单个字段—NumberOfOpenCreditLinesAndLoans

 分析单个字段—NumberRealEstateLoansOrLines

分析单个字段—NumberOfDependents 

# 2.3、数据分箱

# 2.4、特征筛选:利用IV方法

#  2.5、计算WOE值

# 2.5.1、基于筛选的特征,利用WOE函数把分箱转成WOE值

# 2.5.2、解析不同bin对应woe值的一一对应情况

#  2.6、切分数据集:留25%作为模型的验证集

# 3、逻辑回归建模

# 3.1、建立模型

# 3.2、模型评估:计算AUC值、绘制ROC曲线、输出混淆矩阵

# 4、模型推理

# 4.1、设计评分卡规则表

# 4.1.1、求出两个刻度A、B:根据2个假设推导出评分卡的刻度参数A和B计算公式

# 4.1.2、设计评分卡规则表 :根据刻度B、对应分箱的WOE编码、模型系数,得到score_card_rule

# 4.2、结合刻度A计算样本评分卡得分

# 4.2.1、随机选取12个样本(6个好的和6个坏的)并计算每个样本的总评分并对比Label,可验证模型效果

# 4.2.2、结合刻度A计算样本评分卡得分

# 4.3、对比测试样本得分及其对应标签,进而设计评审策略


 相关文章
DataScience:基于GiveMeSomeCredit数据集利用特征工程处理、逻辑回归LoR算法实现构建风控中的金融评分卡模型
DataScience:基于GiveMeSomeCredit数据集利用特征工程处理、逻辑回归LoR算法实现构建风控中的金融评分卡模型实现

基于GiveMeSomeCredit数据集利用特征工程处理、逻辑回归LoR算法实现构建风控中的金融评分卡模型

1、加载数据集

查看数据集的摘要信息

   Unnamed: 0  ...  NumberOfDependents
0           1  ...                 2.0
1           2  ...                 1.0
2           3  ...                 0.0
3           4  ...                 0.0
4           5  ...                 0.0

[5 rows x 12 columns]
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150000 entries, 0 to 149999
Data columns (total 12 columns):
 #   Column                                Non-Null Count   Dtype  
---  ------                                --------------   -----  
 0   Unnamed: 0                            150000 non-null  int64  
 1   SeriousDlqin2yrs                      150000 non-null  int64  
 2   RevolvingUtilizationOfUnsecuredLines  150000 non-null  float64
 3   age                                   150000 non-null  int64  
 4   NumberOfTime30-59DaysPastDueNotWorse  150000 non-null  int64  
 5   DebtRatio                             150000 non-null  float64
 6   MonthlyIncome                         120269 non-null  float64
 7   NumberOfOpenCreditLinesAndLoans       150000 non-null  int64  
 8   NumberOfTimes90DaysLate               150000 non-null  int64  
 9   NumberRealEstateLoansOrLines          150000 non-null  int64  
 10  NumberOfTime60-89DaysPastDueNotWorse  150000 non-null  int64  
 11  NumberOfDependents                    146076 non-null  float64
dtypes: float64(4), int64(8)
memory usage: 13.7 MB
None
          Unnamed: 0  ...  NumberOfDependents
count  150000.000000  ...       146076.000000
mean    75000.500000  ...            0.757222
std     43301.414527  ...            1.115086
min         1.000000  ...            0.000000
25%     37500.750000  ...            0.000000
50%     75000.500000  ...            0.000000
75%    112500.250000  ...            1.000000
max    150000.000000  ...           20.000000

2、特征工程:数据分析与处理

# 2.1、缺失值分析及处理

[8 rows x 12 columns]
                                  Column  Number_of_Null_Values  Proportion
0                             Unnamed: 0                      0    0.000000
1                       SeriousDlqin2yrs                      0    0.000000
2   RevolvingUtilizationOfUnsecuredLines                      0    0.000000
3                                    age                      0    0.000000
4   NumberOfTime30-59DaysPastDueNotWorse                      0    0.000000
5                              DebtRatio                      0    0.000000
6                          MonthlyIncome                  29731    0.198207
7        NumberOfOpenCreditLinesAndLoans                      0    0.000000
8                NumberOfTimes90DaysLate                      0    0.000000
9           NumberRealEstateLoansOrLines                      0    0.000000
10  NumberOfTime60-89DaysPastDueNotWorse                      0    0.000000
11                    NumberOfDependents                   3924    0.026160
Unnamed: 0                              0
SeriousDlqin2yrs                        0
RevolvingUtilizationOfUnsecuredLines    0
age                                     0
NumberOfTime30-59DaysPastDueNotWorse    0
DebtRatio                               0
MonthlyIncome                           0
NumberOfOpenCreditLinesAndLoans         0
NumberOfTimes90DaysLate                 0
NumberRealEstateLoansOrLines            0
NumberOfTime60-89DaysPastDueNotWorse    0
NumberOfDependents                      0

# 2.2、单个字段逐个分析

分析label字段:统计SeriousDlqin2yrs类别及其个数统计

Default Rate: 0.06684
count    150000.000000
mean          6.048438
std         249.755371
min           0.000000
25%           0.029867
50%           0.154181
75%           0.559046
max       50708.000000
Name: RevolvingUtilizationOfUnsecuredLines, dtype: float64

[[0, 0.06684], [1, 0.37177950868783705], [2, 0.14555256064690028], [3, 0.09931506849315068], [4, 0.08679245283018867], [5, 0.07874015748031496], [6, 0.07692307692307693], [7, 0.0778688524590164], [8, 0.07407407407407407], [9, 0.07053941908713693], [10, 0.07053941908713693], [11, 0.07053941908713693], [12, 0.06666666666666667], [13, 0.058823529411764705], [14, 0.058823529411764705], [15, 0.05531914893617021], [16, 0.05531914893617021], [17, 0.05531914893617021], [18, 0.05531914893617021], [19, 0.05555555555555555]]
Proportion of Defaulters with Total Amount of Money Owed Not Exceeding Total Credit Limit: 0.05991996127598361
Proportion of Defaulters with Total Amount of Money Owed Not Exceeding or Equal to 13 times of Total Credit Limit:
0.06685273968029273

 分析age字段

count    150000.000000
mean         52.295207
std          14.771866
min           0.000000
25%          41.000000
50%          52.000000
75%          63.000000
max         109.000000
Name: age, dtype: float64

 分析3个类似字段—NumberOfTimes90DaysLate、NumberOfTime60

89DaysPastDueNotWorse、NumberOfTime30-59DaysPastDueNotWorse

 0     141662
1       5243
2       1555
3        667
4        291
5        131
6         80
7         38
8         21
9         19
10         8
11         5
12         2
13         4
14         2
15         2
17         1
96         5
98       264
Name: NumberOfTimes90DaysLate, dtype: int64 
 0     142396
1       5731
2       1118
3        318
4        105
5         34
6         16
7          9
8          2
9          1
11         1
96         5
98       264
Name: NumberOfTime60-89DaysPastDueNotWorse, dtype: int64 
 0     126018
1      16033
2       4598
3       1754
4        747
5        342
6        140
7         54
8         25
9         12
10         4
11         1
12         2
13         1
96         5
98       264
Name: NumberOfTime30-59DaysPastDueNotWorse, dtype: int64
       NumberOfTimes90DaysLate  ...  NumberOfTime30-59DaysPastDueNotWorse
count               269.000000  ...                            269.000000
mean                 97.962825  ...                             97.962825
std                   0.270628  ...                              0.270628
min                  96.000000  ...                             96.000000
25%                  98.000000  ...                             98.000000
50%                  98.000000  ...                             98.000000
75%                  98.000000  ...                             98.000000
max                  98.000000  ...                             98.000000

[8 rows x 3 columns]
{'98,98,98': 263, '96,96,96': 4}

分析单个字段—DebtRatio及与MonthlyIncome、SeriousDlqin2yrs关系

    temp = df_train[(df_DR > df_DR95) & (df_train['SeriousDlqin2yrs'] == df_train['MonthlyIncome'])]
    temp.to_csv('20220314temp.csv')

count    150000.000000
mean        353.005076
std        2037.818523
min           0.000000
25%           0.175074
50%           0.366508
75%           0.868254
max      329664.000000
Name: DebtRatio, dtype: float64 
 2449.0 
            DebtRatio  MonthlyIncome  SeriousDlqin2yrs
count    7494.000000    7494.000000       7494.000000
mean     4417.958367    5126.905791          0.055111
std      7875.314649    1183.339377          0.228212
min      2450.000000       0.000000          0.000000
25%      2893.250000    5400.000000          0.000000
50%      3491.000000    5400.000000          0.000000
75%      4620.000000    5400.000000          0.000000
max    329664.000000    5400.000000          1.000000
331
5400.0    7115
0.0        347
1.0         32
Name: MonthlyIncome, dtype: int64
Number of people who owe around 2449 or more times what they own and have same values for MonthlyIncome and SeriousDlqin2yrs: 331
3489.024999999994 
            DebtRatio  MonthlyIncome  SeriousDlqin2yrs
count    3750.000000     3750.00000       3750.000000
mean     5917.488000     5133.60320          0.064267
std     10925.524011     1169.58239          0.245260
min      3490.000000        0.00000          0.000000
25%      3957.250000     5400.00000          0.000000
50%      4619.000000     5400.00000          0.000000
75%      5789.500000     5400.00000          0.000000
max    329664.000000     5400.00000          1.000000
164
5400.0    3565
0.0        173
1.0         12
Name: MonthlyIncome, dtype: int64
Number of people who owe around 3490 or more times what they own and have same values for MonthlyIncome and SeriousDlqin2yrs: 164

分析单个字段—MonthlyIncome

 

 分析单个字段—NumberOfOpenCreditLinesAndLoans

 分析单个字段—NumberRealEstateLoansOrLines

分析单个字段—NumberOfDependents 

# 2.3、数据分箱

仅label没分箱处理

# 2.4、特征筛选:利用IV方法

bin_DebtRatio cal_IV:  0.0595
bin_MonthlyIncome cal_IV:  0.0562
bin_RevolvingUtilizationOfUnsecuredLines cal_IV:  1.0596
bin_NumberOfOpenCreditLinesAndLoans cal_IV:  0.048
bin_NumberRealEstateLoansOrLines cal_IV:  0.0121
bin_age cal_IV:  0.2404
bin_NumberOfDependents cal_IV:  0.0145
bin_NumberOfTime30-59DaysPastDueNotWorse cal_IV:  0.4924
bin_NumberOfTime60-89DaysPastDueNotWorse cal_IV:  0.2666
bin_NumberOfTimes90DaysLate cal_IV:  0.4916

#  2.5、计算WOE值

# 2.5.1、基于筛选的特征,利用WOE函数把分箱转成WOE值

woe_cols: ['woe_bin_age', 'woe_bin_RevolvingUtilizationOfUnsecuredLines', 'woe_bin_NumberOfTime30-59DaysPastDueNotWorse', 'woe_bin_NumberOfTime60-89DaysPastDueNotWorse', 'woe_bin_NumberOfTimes90DaysLate']
------------- age
<class 'pandas.core.frame.DataFrame'> df……final 
    features           bin       woe
0       age  (40.0, 50.0]  0.228343
1       age  (25.0, 40.0]  0.469547
5       age   (70.0, inf] -1.132145
6       age  (50.0, 60.0] -0.084782
15      age  (60.0, 70.0] -0.689003
19      age  (-inf, 25.0]  0.562024


------------- RevolvingUtilizationOfUnsecuredLines
<class 'pandas.core.frame.DataFrame'> df……final 
                                 features               bin       woe
0   RevolvingUtilizationOfUnsecuredLines  (0.699, 50708.0]  1.242254
2   RevolvingUtilizationOfUnsecuredLines    (0.271, 0.699]  0.053164
3   RevolvingUtilizationOfUnsecuredLines   (0.0832, 0.271] -0.866502
11  RevolvingUtilizationOfUnsecuredLines  (-0.001, 0.0192] -1.286617
14  RevolvingUtilizationOfUnsecuredLines  (0.0192, 0.0832] -1.447382


------------- NumberOfTime30-59DaysPastDueNotWorse
<class 'pandas.core.frame.DataFrame'> df……final 
                                    features          bin       woe
0      NumberOfTime30-59DaysPastDueNotWorse   (1.0, 2.0]  1.616726
1      NumberOfTime30-59DaysPastDueNotWorse  (-inf, 1.0] -0.257826
13     NumberOfTime30-59DaysPastDueNotWorse   (2.0, 3.0]  2.027495
183    NumberOfTime30-59DaysPastDueNotWorse   (3.0, 4.0]  2.336869
191    NumberOfTime30-59DaysPastDueNotWorse   (4.0, 5.0]  2.436786
251    NumberOfTime30-59DaysPastDueNotWorse   (6.0, 7.0]  2.710383
423    NumberOfTime30-59DaysPastDueNotWorse   (9.0, inf]  2.846431
1052   NumberOfTime30-59DaysPastDueNotWorse   (5.0, 6.0]  2.750685
6909   NumberOfTime30-59DaysPastDueNotWorse   (7.0, 8.0]  1.882503
10822  NumberOfTime30-59DaysPastDueNotWorse   (8.0, 9.0]  1.943128


------------- NumberOfTime60-89DaysPastDueNotWorse
<class 'pandas.core.frame.DataFrame'> df……final 
                                    features          bin       woe
0      NumberOfTime60-89DaysPastDueNotWorse  (-inf, 1.0] -0.097990
186    NumberOfTime60-89DaysPastDueNotWorse   (1.0, 2.0]  2.643431
423    NumberOfTime60-89DaysPastDueNotWorse   (4.0, 5.0]  3.115848
1146   NumberOfTime60-89DaysPastDueNotWorse   (2.0, 3.0]  2.901978
1733   NumberOfTime60-89DaysPastDueNotWorse   (9.0, inf]  2.829466
2406   NumberOfTime60-89DaysPastDueNotWorse   (3.0, 4.0]  3.121783
6664   NumberOfTime60-89DaysPastDueNotWorse   (5.0, 6.0]  3.734887
16642  NumberOfTime60-89DaysPastDueNotWorse   (6.0, 7.0]  2.859419
23964  NumberOfTime60-89DaysPastDueNotWorse   (7.0, 8.0]  2.636275
68976  NumberOfTime60-89DaysPastDueNotWorse   (8.0, 9.0]  2.636275


------------- NumberOfTimes90DaysLate
<class 'pandas.core.frame.DataFrame'> df……final 
                      features          bin       woe
0     NumberOfTimes90DaysLate  (-inf, 1.0] -0.176674
13    NumberOfTimes90DaysLate   (2.0, 3.0]  2.947611
186   NumberOfTimes90DaysLate   (1.0, 2.0]  2.632416
1298  NumberOfTimes90DaysLate   (4.0, 5.0]  3.183915
1713  NumberOfTimes90DaysLate   (3.0, 4.0]  3.344926
1733  NumberOfTimes90DaysLate   (9.0, inf]  2.821100
2910  NumberOfTimes90DaysLate   (8.0, 9.0]  3.665894
3400  NumberOfTimes90DaysLate   (5.0, 6.0]  3.041740
3929  NumberOfTimes90DaysLate   (6.0, 7.0]  4.124352
5684  NumberOfTimes90DaysLate   (7.0, 8.0]  3.552566

# 2.5.2、解析不同bin对应woe值的一一对应情况

Variable Binning Score
NumberOfTime30-59DaysPastDueNotWorse (-inf, 1.0] 11
NumberOfTime30-59DaysPastDueNotWorse (1.0, 2.0] -70
NumberOfTime30-59DaysPastDueNotWorse (2.0, 3.0] -87
NumberOfTime30-59DaysPastDueNotWorse (3.0, 4.0] -101
NumberOfTime30-59DaysPastDueNotWorse (4.0, 5.0] -105
NumberOfTime30-59DaysPastDueNotWorse (5.0, 6.0] -119
NumberOfTime30-59DaysPastDueNotWorse (6.0, 7.0] -117
NumberOfTime30-59DaysPastDueNotWorse (7.0, 8.0] -81
NumberOfTime30-59DaysPastDueNotWorse (8.0, 9.0] -84
NumberOfTime30-59DaysPastDueNotWorse (9.0, inf] -123
NumberOfTime60-89DaysPastDueNotWorse (-inf, 1.0] 2
NumberOfTime60-89DaysPastDueNotWorse (1.0, 2.0] -66
NumberOfTime60-89DaysPastDueNotWorse (2.0, 3.0] -73
NumberOfTime60-89DaysPastDueNotWorse (3.0, 4.0] -78
NumberOfTime60-89DaysPastDueNotWorse (4.0, 5.0] -78
NumberOfTime60-89DaysPastDueNotWorse (5.0, 6.0] -94
NumberOfTime60-89DaysPastDueNotWorse (6.0, 7.0] -72
NumberOfTime60-89DaysPastDueNotWorse (7.0, 8.0] -66
NumberOfTime60-89DaysPastDueNotWorse (8.0, 9.0] -66
NumberOfTime60-89DaysPastDueNotWorse (9.0, inf] -71
NumberOfTimes90DaysLate (-inf, 1.0] 7
NumberOfTimes90DaysLate (1.0, 2.0] -107
NumberOfTimes90DaysLate (2.0, 3.0] -120
NumberOfTimes90DaysLate (3.0, 4.0] -137
NumberOfTimes90DaysLate (4.0, 5.0] -130
NumberOfTimes90DaysLate (5.0, 6.0] -124
NumberOfTimes90DaysLate (6.0, 7.0] -168
NumberOfTimes90DaysLate (7.0, 8.0] -145
NumberOfTimes90DaysLate (8.0, 9.0] -150
NumberOfTimes90DaysLate (9.0, inf] -115
RevolvingUtilizationOfUnsecuredLines (-0.001, 0.0192] 71
RevolvingUtilizationOfUnsecuredLines (0.0192, 0.0832] 80
RevolvingUtilizationOfUnsecuredLines (0.0832, 0.271] 48
RevolvingUtilizationOfUnsecuredLines (0.271, 0.699] -3
RevolvingUtilizationOfUnsecuredLines (0.699, 50708.0] -69
age (-inf, 25.0] -19
age (25.0, 40.0] -16
age (40.0, 50.0] -8
age (50.0, 60.0] 3
age (60.0, 70.0] 23
age (70.0, inf] 38

#  2.6、切分数据集:留25%作为模型的验证集

bad_rate:  0.06688333333333334
X_train.shape: (120000, 5)

# 3、逻辑回归建模

# 3.1、建立模型

LoR_Score: 0.9368266666666667
LoRC_pred_proba [0.0121424  0.15221691 0.02248172 ... 0.0528182  0.0121424  0.0952767 ]
LoRC_coef_lists_ 
 [0.46051155 0.76869053 0.59104431 0.36452944 0.56621256]

# 3.2、模型评估:计算AUC值、绘制ROC曲线、输出混淆矩阵

Auc_Score: 0.8226466762033763
[[34827   200]
 [ 2169   304]]

# 4、模型推理

# 4.1、设计评分卡规则表

# 4.1.1、求出两个刻度A、B:根据2个假设推导出评分卡的刻度参数A和B计算公式

650 72.13

# 4.1.2、设计评分卡规则表 :根据刻度B、对应分箱的WOE编码、模型系数,得到score_card_rule

Variable Binning Score
0 age (40.0, 50.0] -8
1 age (25.0, 40.0] -16
2 age (70.0, inf] 38
3 age (50.0, 60.0] 3
4 age (60.0, 70.0] 23
5 age (-inf, 25.0] -19
6 RevolvingUtilizationOfUnsecuredLines (0.699, 50708.0] -69
7 RevolvingUtilizationOfUnsecuredLines (0.271, 0.699] -3
8 RevolvingUtilizationOfUnsecuredLines (0.0832, 0.271] 48
9 RevolvingUtilizationOfUnsecuredLines (-0.001, 0.0192] 71
10 RevolvingUtilizationOfUnsecuredLines (0.0192, 0.0832] 80
11 NumberOfTime30-59DaysPastDueNotWorse (1.0, 2.0] -69
12 NumberOfTime30-59DaysPastDueNotWorse (-inf, 1.0] 11
13 NumberOfTime30-59DaysPastDueNotWorse (2.0, 3.0] -86
14 NumberOfTime30-59DaysPastDueNotWorse (3.0, 4.0] -100
15 NumberOfTime30-59DaysPastDueNotWorse (4.0, 5.0] -104
16 NumberOfTime30-59DaysPastDueNotWorse (6.0, 7.0] -116
17 NumberOfTime30-59DaysPastDueNotWorse (9.0, inf] -121
18 NumberOfTime30-59DaysPastDueNotWorse (5.0, 6.0] -117
19 NumberOfTime30-59DaysPastDueNotWorse (7.0, 8.0] -80
20 NumberOfTime30-59DaysPastDueNotWorse (8.0, 9.0] -83
21 NumberOfTime60-89DaysPastDueNotWorse (-inf, 1.0] 3
22 NumberOfTime60-89DaysPastDueNotWorse (1.0, 2.0] -70
23 NumberOfTime60-89DaysPastDueNotWorse (4.0, 5.0] -82
24 NumberOfTime60-89DaysPastDueNotWorse (2.0, 3.0] -76
25 NumberOfTime60-89DaysPastDueNotWorse (9.0, inf] -74
26 NumberOfTime60-89DaysPastDueNotWorse (3.0, 4.0] -82
27 NumberOfTime60-89DaysPastDueNotWorse (5.0, 6.0] -98
28 NumberOfTime60-89DaysPastDueNotWorse (6.0, 7.0] -75
29 NumberOfTime60-89DaysPastDueNotWorse (7.0, 8.0] -69
30 NumberOfTime60-89DaysPastDueNotWorse (8.0, 9.0] -69
31 NumberOfTimes90DaysLate (-inf, 1.0] 7
32 NumberOfTimes90DaysLate (2.0, 3.0] -120
33 NumberOfTimes90DaysLate (1.0, 2.0] -108
34 NumberOfTimes90DaysLate (4.0, 5.0] -130
35 NumberOfTimes90DaysLate (3.0, 4.0] -137
36 NumberOfTimes90DaysLate (9.0, inf] -115
37 NumberOfTimes90DaysLate (8.0, 9.0] -150
38 NumberOfTimes90DaysLate (5.0, 6.0] -124
39 NumberOfTimes90DaysLate (6.0, 7.0] -168
40 NumberOfTimes90DaysLate (7.0, 8.0] -145

# 4.2、结合刻度A计算样本评分卡得分

# 4.2.1、随机选取12个样本(6个好的和6个坏的)并计算每个样本的总评分并对比Label,可验证模型效果

# 4.2.2、结合刻度A计算样本评分卡得分

age RevolvingUtilization
OfUnsecuredLines
NumberOfTime
30-59Days
PastDueNotWorse
NumberOfTime60-89
DaysPastDueNotWorse
NumberOf
Times90
DaysLate
score
44377 55 0.081686933 0 0 0 754
25143 47 0.9999999 0 0 1 594
67429 54 0.015170898 0 0 0 745
66689 26 0.252252252 0 0 0 703
42656 40 0.916334661 1 0 0 586
81903 65 0.091477937 0 0 0 742
age Revolving
UtilizationOf
UnsecuredLines
NumberOfTime
30-59Days
PastDueNotWorse
NumberOfTime60-89
DaysPastDueNotWorse
NumberOf
Times90
DaysLate
score
111052 30 0.9999999 0 4 2 386
30582 30 0.9999999 0 0 0 586
23677 43 0.68756082 0 0 0 660
87669 27 0.9999999 0 1 1 586
46920 50 0.442370466 0 0 0 660
78952 48 0.40781316 0 0 0 660

# 4.3、对比测试样本得分及其对应标签,进而设计评审策略

44377 754.0 --------- 直接接受!
age                                      47.0
RevolvingUtilizationOfUnsecuredLines      1.0
NumberOfTime30-59DaysPastDueNotWorse      0.0
NumberOfTime60-89DaysPastDueNotWorse      0.0
NumberOfTimes90DaysLate                   1.0
score                                   594.0
Name: 25143, dtype: float64
25143 594.0 --------- 人工审核!
age                                      54.000000
RevolvingUtilizationOfUnsecuredLines      0.015171
NumberOfTime30-59DaysPastDueNotWorse      0.000000
NumberOfTime60-89DaysPastDueNotWorse      0.000000
NumberOfTimes90DaysLate                   0.000000
score                                   745.000000
Name: 67429, dtype: float64
67429 745.0 --------- 直接接受!
age                                      26.000000
RevolvingUtilizationOfUnsecuredLines      0.252252
NumberOfTime30-59DaysPastDueNotWorse      0.000000
NumberOfTime60-89DaysPastDueNotWorse      0.000000
NumberOfTimes90DaysLate                   0.000000
score                                   703.000000
Name: 66689, dtype: float64
66689 703.0 --------- 直接接受!
age                                      40.000000
RevolvingUtilizationOfUnsecuredLines      0.916335
NumberOfTime30-59DaysPastDueNotWorse      1.000000
NumberOfTime60-89DaysPastDueNotWorse      0.000000
NumberOfTimes90DaysLate                   0.000000
score                                   586.000000
Name: 42656, dtype: float64
42656 586.0 --------- 人工审核!
age                                      65.000000
RevolvingUtilizationOfUnsecuredLines      0.091478
NumberOfTime30-59DaysPastDueNotWorse      0.000000
NumberOfTime60-89DaysPastDueNotWorse      0.000000
NumberOfTimes90DaysLate                   0.000000
score                                   742.000000
Name: 81903, dtype: float64
81903 742.0 --------- 直接接受!

猜你喜欢

转载自blog.csdn.net/qq_41185868/article/details/123463049