信号与系统分析2022春季作业-参考答案:第十一次作业

作业题目
目 录
Contents
参考答案
z变换性质
求解微分方程
求解差分方程
系统的单位冲激响应
§00 业题目

  作业要求链接: 信号与系统2022春季作业-第十一次作业 : https://zhuoqing.blog.csdn.net/article/details/124730642

§11 考答案


1.1 z变换性质

1.1.1 求序列的z变换

◎ 求解:

  (1) x 1 [ n ] = ( − 3 ) n ⋅ n ⋅ u [ n ] x_1 \left[ n \right] = \left( { - 3} \right)^n \cdot n \cdot u\left[ n \right] x1[n]=(3)nnu[n] Z { ( − 3 ) n ⋅ u [ n ] } = z z + 3 Z\left\{ {\left( { - 3} \right)^n \cdot u\left[ n \right]} \right\} = {z \over {z + 3}} Z{ (3)nu[n]}=z+3z Z { ( − 3 ) n ⋅ n ⋅ u [ n ] } = − z d d z X ( z ) = − z d d z z z + 3 = − 3 z ( z + 3 ) 2 Z\left\{ {\left( { - 3} \right)^n \cdot n \cdot u\left[ n \right]} \right\} = - z{d \over {dz}}X\left( z \right) = - z{d \over {dz}}{z \over {z + 3}} = { { - 3z} \over {\left( {z + 3} \right)^2 }} Z{ (3)nnu[n]}=zdzdX(z)=zdzdz+3z=(z+3)23z

  (2) x 2 [ n ] = ( n − 4 ) ⋅ u [ n ] x_2 \left[ n \right] = \left( {n - 4} \right) \cdot u\left[ n \right] x2[n]=(n4)u[n] Z { n ⋅ u [ n ] } = − z d d z z z − 1 = z ( z − 1 ) 2 Z\left\{ {n \cdot u\left[ n \right]} \right\} = - z{d \over {dz}}{z \over {z - 1}} = {z \over {\left( {z - 1} \right)^2 }} Z{ nu[n]}=zdzdz1z=(z1)2z Z { ( n − 4 ) ⋅ u [ n ] } = z ( z − 1 ) 2 − 4 z z − 1 = − 4 z 2 + 5 z ( z − 1 ) 2 Z\left\{ {\left( {n - 4} \right) \cdot u\left[ n \right]} \right\} = {z \over {\left( {z - 1} \right)^2 }} - { {4z} \over {z - 1}} = { { - 4z^2 + 5z} \over {\left( {z - 1} \right)^2 }} Z{ (n4)u[n]}=(z1)2zz14z=(z1)24z2+5z

  (3) x 3 [ n ] = n ⋅ a n − 2 ⋅ u [ n ] x_3 \left[ n \right] = n \cdot a^{n - 2} \cdot u\left[ n \right] x3[n]=nan2u[n] Z { a n ⋅ u [ n ] } = z z − a Z\left\{ {a^n \cdot u\left[ n \right]} \right\} = {z \over {z - a}} Z{ anu[n]}=zaz Z { n ⋅ a n ⋅ u [ n ] } = − z d d z z z − a = a z ( z − a ) 2 Z\left\{ {n \cdot a^n \cdot u\left[ n \right]} \right\} = - z{d \over {dz}}{z \over {z - a}} = { {az} \over {\left( {z - a} \right)^2 }} Z{ nanu[n]}=zdzdzaz=(za)2az Z { n ⋅ a n − 2 ⋅ u [ n ] } = z a ( z − a ) 2 Z\left\{ {n \cdot a^{n - 2} \cdot u\left[ n \right]} \right\} = {z \over {a\left( {z - a} \right)^2 }} Z{ nan2u[n]}=a(za)2z

  (4) x 4 [ n ] = 2 n ⋅ ( ∑ k = 0 + ∞ ( − 1 ) k ⋅ u [ n − k ] ) x_4 \left[ n \right] = 2^n \cdot \left( {\sum\limits_{k = 0}^{ + \infty } {\left( { - 1} \right)^k \cdot u\left[ {n - k} \right]} } \right) x4[n]=2n(k=0+(1)ku[nk]) Z { ( − 1 ) n ⋅ u [ n ] } = z z + 1 Z\left\{ {\left( { - 1} \right)^n \cdot u\left[ n \right]} \right\} = {z \over {z + 1}} Z{ (1)nu[n]}=z+1z Z { u [ n ] } = z z − 1 Z\left\{ {u\left[ n \right]} \right\} = {z \over {z - 1}} Z{ u[n]}=z1z Z { ( − 1 ) k ⋅ u [ n ] ∗ u [ n ] } = z z + 1 ⋅ z z − 1 = z 2 z 2 − 1 Z\left\{ {\left( { - 1} \right)^k \cdot u\left[ n \right] * u\left[ n \right]} \right\} = {z \over {z + 1}} \cdot {z \over {z - 1}} = { {z^2 } \over {z^2 - 1}} Z{ (1)ku[n]u[n]}=z+1zz1z=z21z2 Z { 2 n ⋅ [ ( − 1 ) k u [ n ] ∗ u [ n ] ] } = ( z 2 ) 2 ( z 2 ) 2 − 1 = z 2 z 2 − 4 Z\left\{ {2^n \cdot \left[ {\left( { - 1} \right)^k u\left[ n \right] * u\left[ n \right]} \right]} \right\} = { {\left( { {z \over 2}} \right)^2 } \over {\left( { {z \over 2}} \right)^2 - 1}} = { {z^2 } \over {z^2 - 4}} Z{ 2n[(1)ku[n]u[n]]}=(2z)21(2z)2=z24z2

  (5) x 5 [ n ] = a n n + 2 ⋅ u [ n + 1 ] x_5 \left[ n \right] = { {a^n } \over {n + 2}} \cdot u\left[ {n + 1} \right] x5[n]=n+2anu[n+1] Z { 1 n + 1 ⋅ u [ n ] } = z ⋅ ln ⁡ z z − 1 Z\left\{ { {1 \over {n + 1}} \cdot u\left[ n \right]} \right\} = z \cdot \ln {z \over {z - 1}} Z{ n+11u[n]}=zlnz1z Z { 1 n + 2 ⋅ u [ n + 1 ] } = z 2 ln ⁡ z z − 1 Z\left\{ { {1 \over {n + 2}} \cdot u\left[ {n + 1} \right]} \right\} = z^2 \ln {z \over {z - 1}} Z{ n+21u[n+1]}=z2lnz1z Z { a n n + 2 ⋅ u [ n + 1 ] } = ( z a ) 2 ln ⁡ z a z a − 1 = z 2 a 2 ln ⁡ z z − a Z\left\{ { { {a^n } \over {n + 2}} \cdot u\left[ {n + 1} \right]} \right\} = \left( { {z \over a}} \right)^2 \ln { { {z \over a}} \over { {z \over a} - 1}} = { {z^2 } \over {a^2 }}\ln {z \over {z - a}} Z{ n+2anu[n+1]}=(az)2lnaz1az=a2z2lnzaz

  • 另外一种求解方法:

Z { a n n + 2 ⋅ u [ n ] } = Z { a n n + 2 ⋅ u [ n ] + a − 1 δ [ − 1 ] } = − z 2 a 2 [ ln ⁡ ( z − a z ) + a z ] − z a Z\left\{ { { {a^n } \over {n + 2}} \cdot u\left[ n \right]} \right\} = Z\left\{ { { {a^n } \over {n + 2}} \cdot u\left[ n \right] + a^{ - 1} \delta \left[ { - 1} \right]} \right\} = { { - z^2 } \over {a^2 }}\left[ {\ln \left( { { {z - a} \over z}} \right) + {a \over z}} \right] - {z \over a} Z{ n+2anu[n]}=Z{ n+2anu[n]+a1δ[1]}=a2z2[ln(zza)+za]az = − z 2 a 2 ln ⁡ ( z − a z ) = z 2 a 2 ln ⁡ ( z − a z ) = { { - z^2 } \over {a^2 }}\ln \left( { { {z - a} \over z}} \right) = { {z^2 } \over {a^2 }}\ln \left( { { {z - a} \over z}} \right) =a2z2ln(zza)=a2z2ln(zza)

  (6) x 6 [ n ] = ( 1 3 ) n . cos ⁡ n π 2 ⋅ u [ n ] x_6 \left[ n \right] = \left( { {1 \over 3}} \right)^n .\cos { {n\pi } \over 2} \cdot u\left[ n \right] x6[n]=(31)n.cos2nπu[n] Z { cos ⁡ n ω } = z ( z − cos ⁡ ω ) z 2 − 2 z cos ⁡ ω + 1 Z\left\{ {\cos n\omega } \right\} = { {z\left( {z - \cos \omega } \right)} \over {z^2 - 2z\cos \omega + 1}} Z{ cosnω}=z22zcosω+1z(zcosω) Z { cos ⁡ ( n π 2 ) } = z 2 z 2 + 1 Z\left\{ {\cos \left( { { {n\pi } \over 2}} \right)} \right\} = { {z^2 } \over {z^2 + 1}} Z{ cos(2nπ)}=z2+1z2 Z { ( 1 3 ) n cos ⁡ ( n ω 2 ) ⋅ u [ n ] } = ( 3 z ) 2 ( 3 z ) 2 + 1 = 9 z 2 9 z 2 + 1 Z\left\{ {\left( { {1 \over 3}} \right)^n \cos \left( { { {n\omega } \over 2}} \right) \cdot u\left[ n \right]} \right\} = { {\left( {3z} \right)^2 } \over {\left( {3z} \right)^2 + 1}} = { {9z^2 } \over {9z^2 + 1}} Z{ (31)ncos(2nω)u[n]}=(3z)2+1(3z)2=9z2+19z2

1.1.2 初值和终值

◎ 求解:

  (1)解答:
X ( z ) = 1 + z − 1 + z − 2 ( 1 − z − 1 ) ⋅ ( 1 − 2 z − 1 ) X\left( z \right) = { {1 + z^{ - 1} + z^{ - 2} } \over {\left( {1 - z^{ - 1} } \right) \cdot \left( {1 - 2z^{ - 1} } \right)}} X(z)=(1z1)(12z1)1+z1+z2

x [ 0 ] = X ( ∞ ) = 1 x\left[ 0 \right] = X\left( \infty \right) = 1 x[0]=X()=1
  由于存在极点位于2,处于单位圆外,所以 x [ ∞ ] x\left[ \infty \right] x[]不存在。

>>iztrans((1+1/z+1/z/z)/((1-1/z)*(1-2/z)))'
ans=(7*2^n)/2 +kroneckerDelta(n,0)/2 -3

(2)解答:
X ( z ) = 1 ( 1 − 0.5 z − 1 ) ( 1 + 0.5 z − 1 ) X\left( z \right) = {1 \over {\left( {1 - 0.5z^{ - 1} } \right)\left( {1 + 0.5z^{ - 1} } \right)}} X(z)=(10.5z1)(1+0.5z1)1

x [ 0 ] = X ( ∞ ) = 1 x\left[ 0 \right] = X\left( \infty \right) = 1 x[0]=X()=1 x [ ∞ ] = lim ⁡ z → 1 z − 1 ( 1 − 0.5 z − 1 ) ( 1 + 0.5 z − 1 ) = 0 x\left[ \infty \right] = \mathop {\lim }\limits_{z \to 1} { {z - 1} \over {\left( {1 - 0.5z^{ - 1} } \right)\left( {1 + 0.5z^{ - 1} } \right)}} = 0 x[]=z1lim(10.5z1)(1+0.5z1)z1=0

>>iztrans(1/((1-0.5/z)*(1+0.5/z)))'
ans=(-1/2)^n/2 +(1/2)^n/2

(3)解答:
X ( z ) = z − 1 1 − 1.5 z − 1 + 0.5 z − 2 X\left( z \right) = { {z^{ - 1} } \over {1 - 1.5z^{ - 1} + 0.5z^{ - 2} }} X(z)=11.5z1+0.5z2z1

x [ 0 ] = X ( ∞ ) = 0 x\left[ 0 \right] = X\left( \infty \right) = 0 x[0]=X()=0

x [ ∞ ] = lim ⁡ z → 1 z − 1 ( z − 1 ) 1 − 1.5 z − 1 + 0.5 z − 2 = lim ⁡ z → 1 z z − 0.5 = 2 x\left[ \infty \right] = \mathop {\lim }\limits_{z \to 1} { {z^{ - 1} \left( {z - 1} \right)} \over {1 - 1.5z^{ - 1} + 0.5z^{ - 2} }} = \mathop {\lim }\limits_{z \to 1} {z \over {z - 0.5}} = 2 x[]=z1lim11.5z1+0.5z2z1(z1)=z1limz0.5z=2

>>iztrans(1/z/(1-1.5/z+0.5/z/z))'
ans=2 -2*(1/2)^n

(4)解答:
X ( z ) = z 4 ( z − 1 ) ( z − 0.5 ) ( z − 0.2 ) X\left( z \right) = { {z^4 } \over {\left( {z - 1} \right)\left( {z - 0.5} \right)\left( {z - 0.2} \right)}} X(z)=(z1)(z0.5)(z0.2)z4

X ( z ) = z 4 z 3 − 1.7 z 2 + 0.8 z − 0.1 = z + 1.7 z 3 − 0.8 z 2 + 0.1 z z 3 X\left( z \right) = { {z^4 } \over {z^3 - 1.7z^2 + 0.8z - 0.1}} = z + { {1.7z^3 - 0.8z^2 + 0.1z} \over {z^3 }} X(z)=z31.7z2+0.8z0.1z4=z+z31.7z30.8z2+0.1z

x [ 0 ] = lim ⁡ z → ∞ 1.7 z 3 − 0.8 z 2 + 0.1 z z 3 = 1.7 x\left[ 0 \right] = \mathop {\lim }\limits_{z \to \infty } { {1.7z^3 - 0.8z^2 + 0.1z} \over {z^3 }} = 1.7 x[0]=zlimz31.7z30.8z2+0.1z=1.7

x [ ∞ ] = lim ⁡ z → 1 z 4 ( z − 1 ) ( z − 1 ) ( z − 0.5 ) ( z − 0.2 ) = 1 0.5 ∗ 0.8 = 2.5 x\left[ \infty \right] = \mathop {\lim }\limits_{z \to 1} { {z^4 \left( {z - 1} \right)} \over {\left( {z - 1} \right)\left( {z - 0.5} \right)\left( {z - 0.2} \right)}} = {1 \over {0.5*0.8}} = 2.5 x[]=z1lim(z1)(z0.5)(z0.2)z4(z1)=0.50.81=2.5

>>iztrans(z^4/((z-1)*(z-0.5)*(z-0.2)))'
ans=(1/5)^n/30 -(5*(1/2)^n)/6 +iztrans(z,z,n)+5/2

1.1.3 求序列卷积

◎ 求解:

  (1) 根据 z 变换的卷积定理 y [ n ] = x [ n ] ∗ h [ n ] y\left[ n \right] = x\left[ n \right] * h\left[ n \right] y[n]=x[n]h[n] ,那么 y [ n ] y\left[ n \right] y[n] 的 z 变换为: Y ( z ) = H ( z ) ⋅ X ( z ) = 1 z − a ⋅ z z − 1 = 1 a − 1 z z − a ⋅ 1 1 − a z z − 1 Y\left( z \right) = H\left( z \right) \cdot X\left( z \right) = {1 \over {z - a}} \cdot {z \over {z - 1}} = { { {1 \over {a - 1}}z} \over {z - a}} \cdot { { {1 \over {1 - a}}z} \over {z - 1}} Y(z)=H(z)X(z)=za1z1z=zaa11zz11a1z 所以 y [ n ] = 1 1 − a u [ n ] − 1 1 − a a n ⋅ u [ n ] y\left[ n \right] = {1 \over {1 - a}}u\left[ n \right] - {1 \over {1 - a}}a^n \cdot u\left[ n \right] y[n]=1a1u[n]1a1anu[n]

  (2) 序列 x [ n ] , h [ n ] x\left[ n \right],h\left[ n \right] x[n],h[n] 的 z 变换分别为: X ( z ) = 2 z − 1 X\left( z \right) = {2 \over {z - 1}} X(z)=z12 H ( z ) = Z { ∑ k = 0 ∞ ( − 1 ) k δ [ n − k ] } = Z { ( − 1 ) n u [ n ] } = z z + 1 H\left( z \right) = Z\left\{ {\sum\limits_{k = 0}^\infty {\left( { - 1} \right)^k \delta \left[ {n - k} \right]} } \right\} = Z\left\{ {\left( { - 1} \right)^n u\left[ n \right]} \right\} = {z \over {z + 1}} H(z)=Z{ k=0(1)kδ[nk]}=Z{ (1)nu[n]}=z+1z 那么,根据 z 变换的卷积定理可得: Y ( z ) = X ( z ) ⋅ H ( z ) = 2 z − 1 ⋅ z z + 1 = z z − 1 + − z z + 1 Y\left( z \right) = X\left( z \right) \cdot H\left( z \right) = {2 \over {z - 1}} \cdot {z \over {z + 1}} = {z \over {z - 1}} + { { - z} \over {z + 1}} Y(z)=X(z)H(z)=z12z+1z=z1z+z+1z 所以 y [ n ] = u [ n ] − ( − 1 ) n ⋅ u [ n ] y\left[ n \right] = u\left[ n \right] - \left( { - 1} \right)^n \cdot u\left[ n \right] y[n]=u[n](1)nu[n]

1.1.4 求序列的乘积z变换

◎ 求解:

  (1)解答:
Z { x [ n ] ⋅ h [ n ] } = 1 2 π j ⋅ ∮ C X ( v ) ⋅ H ( z v ) ⋅ v − 1 d v Z\left\{ {x\left[ n \right] \cdot h\left[ n \right]} \right\} = {1 \over {2\pi j}} \cdot \oint_C {X\left( v \right) \cdot H\left( { {z \over v}} \right) \cdot v^{ - 1} dv} Z{ x[n]h[n]}=2πj1CX(v)H(vz)v1dv = 1 2 π j ⋅ ∮ C 1 1 − 1 2 v − 1 ⋅ 1 1 − 2 z v v − 1 d v = {1 \over {2\pi j}} \cdot \oint_C { {1 \over {1 - {1 \over 2}v^{ - 1} }} \cdot {1 \over {1 - 2{z \over v}}}v^{ - 1} dv} =2πj1C121v1112vz1v1dv = 1 2 π j ⋅ ∮ C v ( v − 1 2 ) ( v − 2 z ) d v = {1 \over {2\pi j}} \cdot \oint_C { {v \over {\left( {v - {1 \over 2}} \right)\left( {v - 2z} \right)}}dv} =2πj1C(v21)(v2z)vdv

根据 X ( z ) , H ( z ) X\left( z \right),H\left( z \right) X(z),H(z)的收敛域,可知: ∣ v ∣ > 0.5 ,     ∣ z v ∣ < 0.5 \left| v \right| > 0.5,\,\,\,\left| { {z \over v}} \right| < 0.5 v>0.5,vz<0.5
  所以上述积分函数包含的极点为: 1 2 ,    2 z {1 \over 2},\,\,2z 21,2z

Z { x [ n ] ⋅ h [ n ] } = R e s [ v ( v − 1 2 ) ( v − 2 z ) ] v = 1 2 +   R e s [ v ( v − 1 2 ) ( v − 2 z ) ] v = 2 z = 1 Z\left\{ {x\left[ n \right] \cdot h\left[ n \right]} \right\} = {\mathop{\rm Re}\nolimits} s\left[ { {v \over {\left( {v - {1 \over 2}} \right)\left( {v - 2z} \right)}}} \right]_{v = {1 \over 2}} + \,{\mathop{\rm Re}\nolimits} s\left[ { {v \over {\left( {v - {1 \over 2}} \right)\left( {v - 2z} \right)}}} \right]_{v = 2z} = 1 Z{ x[n]h[n]}=Res[(v21)(v2z)v]v=21+Res[(v21)(v2z)v]v=2z=1

  所以 x [ n ] ⋅ h [ n ] = δ [ n ] x\left[ n \right] \cdot h\left[ n \right] = \delta \left[ n \right] x[n]h[n]=δ[n]

  (2)解答:
Z { x [ n ] ⋅ h [ n ] } = 1 2 π j ⋅ ∮ C X ( v ) ⋅ H ( z v ) ⋅ v − 1 d v Z\left\{ {x\left[ n \right] \cdot h\left[ n \right]} \right\} = {1 \over {2\pi j}} \cdot \oint_C {X\left( v \right) \cdot H\left( { {z \over v}} \right) \cdot v^{ - 1} dv} Z{ x[n]h[n]}=2πj1CX(v)H(vz)v1dv = 1 2 π j ⋅ ∮ C v v − e − b ⋅ z v ⋅ sin ⁡ ω 0 ( z v ) 2 − 2 ( z v ) cos ⁡ ω 0 + 1 ⋅ v − 1 d v = {1 \over {2\pi j}} \cdot \oint_C { {v \over {v - e^{ - b} }} \cdot { { {z \over v} \cdot \sin \omega _0 } \over {\left( { {z \over v}} \right)^2 - 2\left( { {z \over v}} \right)\cos \omega _0 + 1}} \cdot v^{ - 1} dv} =2πj1Cvebv(vz)22(vz)cosω0+1vzsinω0v1dv = 1 2 π j ⋅ ∮ C 2 sin ⁡ ω 0 v ( v − e − b ) ( v 2 − 2 z cos ⁡ 0 v + z 2 ) d v = {1 \over {2\pi j}} \cdot \oint_C { { {2\sin \omega _0 v} \over {\left( {v - e^{ - b} } \right)\left( {v^2 - 2z\cos _0 v + z^2 } \right)}}dv} =2πj1C(veb)(v22zcos0v+z2)2sinω0vdv

根据 X ( z ) , H ( z ) X\left( z \right),H\left( z \right) X(z),H(z)的收敛域,可得: ∣ v ∣ > e − b ,    ∣ v ∣ < ∣ z ∣ \left| v \right| > e^{ - b} ,\,\,\left| v \right| < \left| z \right| v>eb,v<z

  所以上述围线积分包含的极点为: e − b e^{ - b} eb
Z { x [ n ] ⋅ h [ n ] } = R e s [ 2 sin ⁡ ω 0 v ( v − e − b ) ( v 2 − 2 z cos ⁡ ω 0 v + z 2 ) ] v = e − b = z ⋅ sin ⁡ ω 0 ⋅ e − b e − 2 b − 2 e − b cos ⁡ ω 0 z + z 2 Z\left\{ {x\left[ n \right] \cdot h\left[ n \right]} \right\} = {\mathop{\rm Re}\nolimits} s\left[ { { {2\sin \omega _0 v} \over {\left( {v - e^{ - b} } \right)\left( {v^2 - 2z\cos \omega _0 v + z^2 } \right)}}} \right]_{v = e^{ - b} } = { {z \cdot \sin \omega _0 \cdot e^{ - b} } \over {e^{ - 2b} - 2e^{ - b} \cos \omega _0 z + z^2 }} Z{ x[n]h[n]}=Res[(veb)(v22zcosω0v+z2)2sinω0v]v=eb=e2b2ebcosω0z+z2zsinω0eb
因此:
x [ n ] ⋅ h [ n ] = e − n b cos ⁡ ω 0 n ⋅ u [ n ] x\left[ n \right] \cdot h\left[ n \right] = e^{ - nb} \cos \omega _0 n \cdot u\left[ n \right] x[n]h[n]=enbcosω0nu[n]

1.1.5 证明z变换累加性质

◎ 证明:

  证明方法1:利用卷积定理证明:
  由于对序列的累加和,可以看成序列与 u [ n ] u\left[ n \right] u[n]的卷积: ∑ k = − ∞ n x [ k ] = x [ n ] ∗ u [ n ] \sum\limits_{k = - \infty }^n {x\left[ k \right]} = x\left[ n \right] * u\left[ n \right] k=nx[k]=x[n]u[n]。所以在根据z变换的卷积定理可知,序列的累加和的z变换等于序列的z变换乘以 u [ n ] u\left[ n \right] u[n]的z变换。而: Z { u [ n ] } = z z − 1 Z\left\{ {u\left[ n \right]} \right\} = {z \over {z - 1}} Z{ u[n]}=z1z,所以: Z [ ∑ k = − ∞ n x ( k ) ] = z z − 1 X ( z )            Z\left[ {\sum\limits_{k = - \infty }^n {x\left( k \right)} } \right] = {z \over {z - 1}}X\left( z \right)\;\;\;\;\; Z[k=nx(k)]=z1zX(z)

  证明方法2:

Z [ ∑ k = − ∞ n x [ k ] ] = ∑ n = − ∞ ∞ ( ∑ k = − ∞ n x [ k ] ) ⋅ z − n Z\left[ {\sum\limits_{k = - \infty }^n {x\left[ k \right]} } \right] = \sum\limits_{n = - \infty }^\infty {\left( {\sum\limits_{k = - \infty }^n {x\left[ k \right]} } \right) \cdot z^{ - n} } Z[k=nx[k]]=n=(k=nx[k])zn = ∑ n = − ∞ ∞ ( ∑ k = − ∞ ∞ x [ k ] ⋅ u [ n − k ] ) ⋅ z − n = \sum\limits_{n = - \infty }^\infty {\left( {\sum\limits_{k = - \infty }^\infty {x\left[ k \right] \cdot u\left[ {n - k} \right]} } \right) \cdot z^{ - n} } =n=(k=x[k]u[nk])zn = ∑ k = − ∞ n ∑ n = − ∞ ∞ x [ k ] ⋅ u [ n − k ] ⋅ z − n = \sum\limits_{k = - \infty }^n {\sum\limits_{n = - \infty }^\infty {x\left[ k \right] \cdot u\left[ {n - k} \right] \cdot z^{ - n} } } =k=nn=x[k]u[nk]zn = ∑ k = − ∞ ∞ x [ k ] ∑ n = − ∞ ∞ u [ n − k ] ⋅ z − ( n − k ) ⋅ z − k = \sum\limits_{k = - \infty }^\infty {x\left[ k \right]\sum\limits_{n = - \infty }^\infty {u\left[ {n - k} \right] \cdot z^{ - \left( {n - k} \right)} } \cdot z^{ - k} } =k=x[k]n=u[nk]z(nk)zk = ∑ k = − ∞ ∞ x [ k ] z − k ∑ n = − ∞ ∞ u [ n − k ] ⋅ z − ( n − k ) = z z − 1 X ( z ) = \sum\limits_{k = - \infty }^\infty {x\left[ k \right]z^{ - k} \sum\limits_{n = - \infty }^\infty {u\left[ {n - k} \right] \cdot z^{ - \left( {n - k} \right)} } } = {z \over {z - 1}}X\left( z \right) =k=x[k]zkn=u[nk]z(nk)=z1zX(z)

1.1.6 序列尺度特性

◎ 求解:

  (1)解答:

X 1 ( z ) = ∑ n = − ∞ + ∞ x 1 [ n ] z − n = ∑ k = − ∞ + ∞ x [ k ] z − 4 k = X ( z 4 ) X_1 \left( z \right) = \sum\limits_{n = - \infty }^{ + \infty } {x_1 \left[ n \right]z^{ - n} } = \sum\limits_{k = - \infty }^{ + \infty } {x\left[ k \right]z^{ - 4k} } = X\left( {z^4 } \right) X1(z)=n=+x1[n]zn=k=+x[k]z4k=X(z4)

  (2)解答:

X 2 ( z ) = ∑ n = − ∞ + ∞ x 2 [ n ] z − n = ∑ k = 4 n , n = − ∞ + ∞ x [ k ] z − k 4 X_2 \left( z \right) = \sum\limits_{n = - \infty }^{ + \infty } {x_2 \left[ n \right]z^{ - n} } = \sum\limits_{k = 4n,n = - \infty }^{ + \infty } {x\left[ k \right]z^{ - {k \over 4}} } X2(z)=n=+x2[n]zn=k=4n,n=+x[k]z4k = ∑ n = − ∞ + ∞ 1 4 [ 1 n + j n + ( − 1 ) n + ( − j ) n ] x [ k ] z − k 4 = \sum\limits_{n = - \infty }^{ + \infty } { {1 \over 4}\left[ {1^n + j^n + \left( { - 1} \right)^n + \left( { - j} \right)^n } \right]x\left[ k \right]z^{ - {k \over 4}} } =n=+41[1n+jn+(1)n+(j)n]x[k]z4k = 1 4 [ X ( z 1 4 + ( − j z ) 1 4 + ( − z ) 1 4 + ( j z ) 1 4 ) ] = {1 \over 4}\left[ {X\left( {z^{ {1 \over 4}} + \left( { - jz} \right)^{ {1 \over 4}} + \left( { - z} \right)^{ {1 \over 4}} + \left( {jz} \right)^{ {1 \over 4}} } \right)} \right] =41[X(z41+(jz)41+(z)41+(jz)41)]

1.2 求解微分方程

◎ 求解:

  (1) 对微分方程两边进行拉普拉斯变换,根据拉普拉斯变换的微分定理可以将系统的初始条件代入方程:

s 2 Y ( s ) − s y ( 0 − ) − y ′ ( 0 − ) + 2 [ s Y ( s ) − y ( 0 − ) ] + Y ( s ) = 1 + 3 s s^2 Y\left( s \right) - sy\left( {0_ - } \right) - y'\left( {0_ - } \right) + 2\left[ {sY\left( s \right) - y\left( {0_ - } \right)} \right] + Y\left( s \right) = 1 + 3s s2Y(s)sy(0)y(0)+2[sY(s)y(0)]+Y(s)=1+3s s 2 Y ( s ) − 2 s − 1 + 2 [ s Y ( s ) − 2 ] + Y ( s ) = 1 + 3 s s^2 Y\left( s \right) - 2s - 1 + 2\left[ {sY\left( s \right) - 2} \right] + Y\left( s \right) = 1 + 3s s2Y(s)2s1+2[sY(s)2]+Y(s)=1+3s ( s 2 + 2 s + 1 ) Y ( s ) = 5 s + 6 \left( {s^2 + 2s + 1} \right)Y\left( s \right) = 5s + 6 (s2+2s+1)Y(s)=5s+6 Y ( s ) = 5 s + 6 s 2 + 2 s + 1 Y\left( s \right) = { {5s + 6} \over {s^2 + 2s + 1}} Y(s)=s2+2s+15s+6

  进行拉普拉斯反变换可以得到方程的解:
y ( t ) = ( t + 5 ) e − t ,    t ≥ 0 y\left( t \right) = \left( {t + 5} \right)e^{ - t} ,\,\,t \ge 0 y(t)=(t+5)et,t0

from head import *
from sympy                  import symbols,simplify,expand,print_latex,Heaviside
from sympy                  import *

#------------------------------------------------------------
s = symbols('s')
t = symbols('t', positive=True)
expression = (5*s+6)/(s**2+2*s+1)

result = inverse_laplace_transform(expression, s,t)

#------------------------------------------------------------
print_latex(result)
_=tspexecutepythoncmd("msg2latex")
clipboard.copy(str(result))

  (2) 根据上题相同步骤,可得: s 2 Y ( s ) − s y ( 0 − ) − y ′ ( 0 − ) + 5 [ s Y ( s ) − y ( 0 − ) ] + 6 Y ( s ) = 3 X ( s ) s^2 Y\left( s \right) - sy\left( {0_ - } \right) - y'\left( {0_ - } \right) + 5\left[ {sY\left( s \right) - y\left( {0_ - } \right)} \right] + 6Y\left( s \right) = 3X\left( s \right) s2Y(s)sy(0)y(0)+5[sY(s)y(0)]+6Y(s)=3X(s) X ( s ) = 1 s + 1 X\left( s \right) = {1 \over {s + 1}} X(s)=s+11 ( s 2 + 5 s + 6 ) Y ( s ) = 1 s + 1 + 1 \left( {s^2 + 5s + 6} \right)Y\left( s \right) = {1 \over {s + 1}} + 1 (s2+5s+6)Y(s)=s+11+1 Y ( s ) = s + 2 ( s + 1 ) ( s 2 + 5 s + 6 ) Y\left( s \right) = { {s + 2} \over {\left( {s + 1} \right)\left( {s^2 + 5s + 6} \right)}} Y(s)=(s+1)(s2+5s+6)s+2

  进行拉普拉斯反变换,可以得到方程的解
y ( t ) = 1 2 e − t − 1 2 e − 3 t ,    t ≥ 0 y\left( t \right) = {1 \over 2}e^{ - t} - {1 \over 2}e^{ - 3t} ,\,\,t \ge 0 y(t)=21et21e3t,t0

s = symbols('s')
t = symbols('t', positive=True)
expression = (s+2)/(s**2+5*s+6)/(s+1)

result = inverse_laplace_transform(expression, s,t)

1.3 求解差分方程

◎ 求解:

  (1) 第一小题求解:

  方程两边同时进行z变换:
Y ( z ) + 3 z − 1 Y ( z ) + 3 ⋅ y [ − 1 ] = X ( z ) Y\left( z \right) + 3z^{ - 1} Y\left( z \right) + 3 \cdot y\left[ { - 1} \right] = X\left( z \right) Y(z)+3z1Y(z)+3y[1]=X(z) ( 1 + 3 z − 1 ) Y ( z ) = z z − 1 2 − 3 \left( {1 + 3z^{ - 1} } \right)Y\left( z \right) = {z \over {z - {1 \over 2}}} - 3 (1+3z1)Y(z)=z21z3 Y ( z ) = z ( − 2 z + 3 2 ) ( z − 1 2 ) ( z + 3 ) = 1 7 z z − 1 2 + − 15 7 z z + 3 Y\left( z \right) = { {z\left( { - 2z + {3 \over 2}} \right)} \over {\left( {z - {1 \over 2}} \right)\left( {z + 3} \right)}} = { { {1 \over 7}z} \over {z - {1 \over 2}}} + { { - { {15} \over 7}z} \over {z + 3}} Y(z)=(z21)(z+3)z(2z+23)=z2171z+z+3715z
y [ n ] = 1 7 ( 1 2 ) n u [ n ] − 15 7 ( − 3 ) n u [ n ] y\left[ n \right] = {1 \over 7}\left( { {1 \over 2}} \right)^n u\left[ n \right] - { {15} \over 7}\left( { - 3} \right)^n u\left[ n \right] y[n]=71(21)nu[n]715(3)nu[n]

  零输入响应:
Y z i ( z ) = − 3 1 + 3 z − 1 = − 3 z z + 3 Y_{zi} \left( z \right) = { { - 3} \over {1 + 3z^{ - 1} }} = { { - 3z} \over {z + 3}} Yzi(z)=1+3z13=z+33z y z i [ n ] = − 3 ( − 3 ) n ⋅ u [ n ] = ( − 3 ) n + 1 u [ n ] y_{zi} \left[ n \right] = - 3\left( { - 3} \right)^n \cdot u\left[ n \right] = \left( { - 3} \right)^{n + 1} u\left[ n \right] yzi[n]=3(3)nu[n]=(3)n+1u[n]

  零状态响应:
Y z s ( z ) = z 2 ( z − 1 2 ) ( z + 3 ) = 1 7 z z − 1 2 + 6 7 z z + 3 Y_{zs} \left( z \right) = { {z^2 } \over {\left( {z - {1 \over 2}} \right)\left( {z + 3} \right)}} = { { {1 \over 7}z} \over {z - {1 \over 2}}} + { { {6 \over 7}z} \over {z + 3}} Yzs(z)=(z21)(z+3)z2=z2171z+z+376z y z s [ n ] = 1 7 ( 1 2 ) n u [ n ] + 6 7 ( − 3 ) n u [ n ] y_{zs} \left[ n \right] = {1 \over 7}\left( { {1 \over 2}} \right)^n u\left[ n \right] + {6 \over 7}\left( { - 3} \right)^n u\left[ n \right] yzs[n]=71(21)nu[n]+76(3)nu[n]

  (2)第二小题求解:

  方程两边同时进行z变换:
Y ( z ) − 1 2 z − 1 Y ( z ) − 1 2 y [ − 1 ] = ( 1 − 1 2 z − 1 ) ⋅ z z − 1 Y\left( z \right) - {1 \over 2}z^{ - 1} Y\left( z \right) - {1 \over 2}y\left[ { - 1} \right] = \left( {1 - {1 \over 2}z^{ - 1} } \right) \cdot {z \over {z - 1}} Y(z)21z1Y(z)21y[1]=(121z1)z1z Y ( z ) = z ( 3 2 z − 1 ) ( z − 1 ) ( z − 1 2 ) = z z − 1 + 1 2 z − 1 2 Y\left( z \right) = { {z\left( { {3 \over 2}z - 1} \right)} \over {\left( {z - 1} \right)\left( {z - {1 \over 2}} \right)}} = {z \over {z - 1}} + { { {1 \over 2}} \over {z - {1 \over 2}}} Y(z)=(z1)(z21)z(23z1)=z1z+z2121 y [ n ] = u [ n ] + ( 1 2 ) n + 2 u [ n ] y\left[ n \right] = u\left[ n \right] + \left( { {1 \over 2}} \right)^{n + 2} u\left[ n \right] y[n]=u[n]+(21)n+2u[n]

  系统的零输入响应为:
Y z i ( z ) = 1 2 z z − 1 2 Y_{zi} \left( z \right) = { { {1 \over 2}z} \over {z - {1 \over 2}}} Yzi(z)=z2121z y z i [ n ] = ( 1 2 ) n + 1 u [ n ] y_{zi} \left[ n \right] = \left( { {1 \over 2}} \right)^{n + 1} u\left[ n \right] yzi[n]=(21)n+1u[n]

  系统的零状态响应为:
Y z s ( z ) = z z − 1 Y_{zs} \left( z \right) = {z \over {z - 1}} Yzs(z)=z1z y z s [ n ] = u [ n ] y_{zs} \left[ n \right] = u\left[ n \right] yzs[n]=u[n]

1.4 系统的单位冲激响应

◎ 求解:

  分别对输入信号 x ( t ) x\left( t \right) x(t)和系统的零状态响应 y ( t ) y\left( t \right) y(t)进行Laplace变换:
X ( s ) = L T [ e − t ⋅ u ( t ) ] = 1 s + 1 X\left( s \right) = LT\left[ {e^{ - t} \cdot u\left( t \right)} \right] = {1 \over {s + 1}} X(s)=LT[etu(t)]=s+11

Y ( s ) = L T [ 1 2 e − t − e − 2 t + 2 e − 3 t ] = 1 2 1 s + 1 − 1 s + 2 + 2 s + 3 Y\left( s \right) = LT\left[ { {1 \over 2}e^{ - t} - e^{ - 2t} + 2e^{ - 3t} } \right] = {1 \over 2}{1 \over {s + 1}} - {1 \over {s + 2}} + {2 \over {s + 3}} Y(s)=LT[21ete2t+2e3t]=21s+11s+21+s+32

= 3 2 s 2 + 9 2 s + 4 ( s + 1 ) ( s + 2 ) ( s + 3 ) = { { {3 \over 2}s^2 + {9 \over 2}s + 4} \over {\left( {s + 1} \right)\left( {s + 2} \right)\left( {s + 3} \right)}} =(s+1)(s+2)(s+3)23s2+29s+4

  根据线性是不变系统的性质,系统的零状态输出等于系统的输入信号与系统的单位冲击响应信号的卷积: y ( t ) = x ( t ) ∗ h ( t ) y\left( t \right) = x\left( t \right) * h\left( t \right) y(t)=x(t)h(t)

  根据Laplace变换的卷积定理: Y ( s ) = X ( s ) ⋅ H ( s ) Y\left( s \right) = X\left( s \right) \cdot H\left( s \right) Y(s)=X(s)H(s)

  因此: H ( s ) = Y ( s ) X ( s ) = 3 2 s 2 + 9 2 s + 4 ( s + 1 ) 2 ( s + 2 ) ( s + 3 ) H\left( s \right) = { {Y\left( s \right)} \over {X\left( s \right)}} = { { {3 \over 2}s^2 + {9 \over 2}s + 4} \over {\left( {s + 1} \right)^2 \left( {s + 2} \right)\left( {s + 3} \right)}} H(s)=X(s)Y(s)=(s+1)2(s+2)(s+3)23s2+29s+4

>>ilaplace((1.5*s*s+4.5*s+4)/((s+1)^2*(s+2)*(s+3)))'
ans=exp(-2*t)-exp(-3*t)+(t*exp(-t))/2

则系统的单位冲击响应信号 h ( t ) h\left( t \right) h(t)等于: h ( t ) = e − 2 t − e − 3 t + 1 2 t ⋅ e − t ,      t ≥ 0 h\left( t \right) = e^{ - 2t} - e^{ - 3t} + {1 \over 2}t \cdot e^{ - t} ,\,\,\,\,t \ge 0 h(t)=e2te3t+21tet,t0

>>ilaplace((1.5*s*s+4.5*s+4)/((s+1)^2*(s+2)*(s+3)))'
ans=exp(-2*t)-exp(-3*t)+(t*exp(-t))/2

则系统的单位冲击响应信号 h ( t ) h\left( t \right) h(t)等于: h ( t ) = e − 2 t − e − 3 t + 1 2 t ⋅ e − t ,      t ≥ 0 h\left( t \right) = e^{ - 2t} - e^{ - 3t} + {1 \over 2}t \cdot e^{ - t} ,\,\,\,\,t \ge 0 h(t)=e2te3t+21tet,t0


■ 相关文献链接:

猜你喜欢

转载自blog.csdn.net/zhuoqingjoking97298/article/details/124284796