【OpenGL ES】Blinn改进的冯氏光照模型

1 前言

        光照元素主要有环境光(ambient)、漫反射光(diffuse)、镜面反射光(specular),光照模型主要有冯氏模型 Blinn 改进的冯氏模型,两者区别在与镜面反射光的计算,冯氏模型根据反向量和观察向量计算镜面反射光,Blinn 改进的冯氏模型根据半向量和法向量计算镜面反射光。

        模型合成颜色:finalColor = (ambient + diffuse + specular) · modelColor

  • 环境光:ambient = ambientStrength · ambientColor
  • 漫反射光:diffuse = cos(α)· diffuseStrength · lightColor
  • 镜面反射光:specular = pow(cos(β), μ)· specularStrength · lightColor

         读者如果对 OpenGL ES 不太熟悉,请回顾以下内容:

     本文完整代码资源见→Blinn改进的冯氏光照模型

        项目目录如下: 

2 案例

        MainActivity.java

package com.zhyan8.light.activity;

import android.opengl.GLSurfaceView;
import android.os.Bundle;
import androidx.appcompat.app.AppCompatActivity;
import com.zhyan8.light.opengl.MyGLSurfaceView;
import com.zhyan8.light.opengl.MyRender;

public class MainActivity extends AppCompatActivity {
    private GLSurfaceView mGlSurfaceView;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        mGlSurfaceView = new MyGLSurfaceView(this);
        setContentView(mGlSurfaceView);
        mGlSurfaceView.setRenderer(new MyRender(getResources()));
    }

    @Override
    protected void onResume() {
        super.onResume();
        mGlSurfaceView.onResume();
    }

    @Override
    protected void onPause() {
        super.onPause();
        mGlSurfaceView.onPause();
    }
}

        MyGLSurfaceView.java

package com.zhyan8.light.opengl;

import android.content.Context;
import android.opengl.GLSurfaceView;
import android.util.AttributeSet;

public class MyGLSurfaceView extends GLSurfaceView {
    public MyGLSurfaceView(Context context) {
        super(context);
        setEGLContextClientVersion(3);
    }

    public MyGLSurfaceView(Context context, AttributeSet attrs) {
        super(context, attrs);
        setEGLContextClientVersion(3);
    }
}

        MyRender.java

package com.zhyan8.light.opengl;

import android.content.res.Resources;
import android.opengl.GLES30;
import android.opengl.GLSurfaceView;
import com.zhyan8.light.model.Model;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;

public class MyRender implements GLSurfaceView.Renderer {
    private Model mModel;

    public MyRender(Resources resources) {
        mModel = new Model(resources);
    }

    @Override
    public void onSurfaceCreated(GL10 gl, EGLConfig eglConfig) {
        //设置背景颜色
        GLES30.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
        //启动深度测试
        GLES30.glEnable(GLES30.GL_DEPTH_TEST);
        //创建程序id
        mModel.onModelCreate();
    }

    @Override
    public void onSurfaceChanged(GL10 gl, int width, int height) {
        //设置视图窗口
        GLES30.glViewport(0, 0, width, height);
        mModel.onModelChange(width, height);
    }

    @Override
    public void onDrawFrame(GL10 gl) {
        //将颜色缓冲区设置为预设的颜色
        GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT | GLES30.GL_DEPTH_BUFFER_BIT);
        //启用顶点的数组句柄
        GLES30.glEnableVertexAttribArray(0);
        GLES30.glEnableVertexAttribArray(1);
        //绘制模型
        mModel.onModelDraw();
        //禁止顶点数组句柄
        GLES30.glDisableVertexAttribArray(0);
        GLES30.glDisableVertexAttribArray(1);
    }
}

        Model.java

package com.zhyan8.light.model;

import android.content.res.Resources;
import android.opengl.GLES30;
import com.zhyan8.light.R;
import com.zhyan8.light.utils.ArraysUtils;
import com.zhyan8.light.utils.ShaderUtils;
import java.nio.FloatBuffer;

public class Model {
    private static final float BALL_RADIUS = 0.5f; // 球半径
    private static final int RING_NUM = 400; // 环数(纬度)
    private static final int RAW_NUM = 200; // 射线数(经度)
    private static final float RING_WIDTH = (float) (Math.PI / RING_NUM); // 环宽度(维度刻度)
    private static final float RAW_GAP_ANGLE = (float) (2 * Math.PI / RAW_NUM); // 两条射线间最小夹角(经度刻度)
    private static final int VERTEX_DIMENSION = 3; // 顶点坐标维度
    private Resources mResources;
    private MyTransform mTransform;
    private Light mLight;
    private float[][] mVertices;
    private FloatBuffer[] mVerticesBuffers;
    private FloatBuffer[] mNormsBuffers;
    private int mProgramId;
    private int mPointNumPerRing;

    public Model(Resources resources) {
        mResources = resources;
        mPointNumPerRing = (RAW_NUM + 1) * 2;
        mVertices = new float[RING_NUM][mPointNumPerRing * VERTEX_DIMENSION];
        mVerticesBuffers = new FloatBuffer[RING_NUM];
        mNormsBuffers = new FloatBuffer[RING_NUM];
        mTransform = new MyTransform();
        mLight = new Light();
    }

    // 模型创建
    public void onModelCreate() {
        computeVertexAndNorm();
        mProgramId = ShaderUtils.createProgram(mResources, R.raw.vertex_shader, R.raw.fragment_shader);
        mLight.onLightCreate(mProgramId);
        mTransform.onTransformCreate(mProgramId);
    }

    // 模型参数变化
    public void onModelChange(int width, int height) {
        mTransform.onTransformChange(width, height);
    }

    // 模型绘制
    public void onModelDraw() {
        GLES30.glUseProgram(mProgramId);
        mLight.openLight();
        mTransform.onTransformExecute();
        for (int i = 0; i < RING_NUM; i++) { // 一环一环绘制纹理
            //准备顶点坐标和纹理坐标
            GLES30.glVertexAttribPointer(0, VERTEX_DIMENSION, GLES30.GL_FLOAT, false, 0, mVerticesBuffers[i]);
            GLES30.glVertexAttribPointer(1, VERTEX_DIMENSION, GLES30.GL_FLOAT, false, 0, mNormsBuffers[i]);
            GLES30.glDrawArrays(GLES30.GL_TRIANGLE_STRIP, 0, mPointNumPerRing);
        }
    }

    // 计算顶点坐标与法线坐标
    private void computeVertexAndNorm() {
        for (int i = 0; i < RING_NUM; i++) {
            getRingVertex(i);
            mVerticesBuffers[i] = ArraysUtils.getFloatBuffer(mVertices[i]);
            mNormsBuffers[i] = ArraysUtils.getFloatBuffer(mVertices[i]);
        }
    }

    // 计算顶点坐标
    private void getRingVertex(int ring) {
        float phi1 = ring * RING_WIDTH;
        float phi2 = phi1 + RING_WIDTH;
        float theta = 0f;
        int index = 0;
        for (int i = 0; i <= RAW_NUM; i++) {
            mVertices[ring][index++] = (float) (BALL_RADIUS * Math.sin(phi1) * Math.cos(theta));
            mVertices[ring][index++] = (float) (BALL_RADIUS * Math.sin(phi1) * Math.sin(theta));
            mVertices[ring][index++] = (float) (BALL_RADIUS * Math.cos(phi1));
            mVertices[ring][index++] = (float) (BALL_RADIUS * Math.sin(phi2) * Math.cos(theta));
            mVertices[ring][index++] = (float) (BALL_RADIUS * Math.sin(phi2) * Math.sin(theta));
            mVertices[ring][index++] = (float) (BALL_RADIUS * Math.cos(phi2));
            theta += RAW_GAP_ANGLE;
        }
    }
}

        Light.java

package com.zhyan8.light.model;

import android.opengl.GLES30;

public class Light {
    private int mProgramId;
    private int mLightPosHandle;
    private int mModelColorHandle;
    private int mAmbientLightColorHandle;
    private int mLightColorHandle;
    private int mMaterialHandle;
    private float[] mLightPos = new float[] {0f, 2f, 0f};
    private float[] mModelColor = new float[] {0.8f, 0.3f, 0.2f, 1.0f}; // 模型颜色(红色)
    private float[] mAmbientLightColor = new float[] {0.7f, 0.7f, 0.7f}; // 环境光颜色(白光)
    private float[] mLightColor = new float[] {1f, 1f, 1f, 1.0f}; // 光源颜色(白光)
    private float[] mMaterial = new float[] {0.2f, 0.9f, 0.6f}; // 材质对环境光、漫反射光、镜面光的反射系数

    public void onLightCreate(int programId) {
        mProgramId = programId;
        mLightPosHandle = GLES30.glGetUniformLocation(mProgramId, "uLightPos");
        mModelColorHandle = GLES30.glGetUniformLocation(mProgramId, "uModelColor");
        mAmbientLightColorHandle = GLES30.glGetUniformLocation(mProgramId, "uAmbientLightColor");
        mLightColorHandle = GLES30.glGetUniformLocation(mProgramId, "uLightColor");
        mMaterialHandle = GLES30.glGetUniformLocation(mProgramId, "uMaterial");
    }

    public void openLight() {
        // 光源位置
        GLES30.glUniform3f(mLightPosHandle, mLightPos[0], mLightPos[1], mLightPos[2]);
        // 模型颜色
        GLES30.glUniform4f(mModelColorHandle, mModelColor[0], mModelColor[1], mModelColor[2], mModelColor[3]);
        // 环境光颜色
        GLES30.glUniform3f(mAmbientLightColorHandle, mAmbientLightColor[0], mAmbientLightColor[1], mAmbientLightColor[2]);
        // 光源颜色
        GLES30.glUniform3f(mLightColorHandle, mLightColor[0], mLightColor[1], mLightColor[2]);
        // 设置材质系数(材质对环境光、漫反射光、镜面光的反射系数)
        GLES30.glUniform3f(mMaterialHandle, mMaterial[0], mMaterial[1], mMaterial[2]);
    }
}

        MyTransform.java

package com.zhyan8.light.model;

import android.opengl.GLES30;
import android.opengl.Matrix;

public class MyTransform {
    private int mProgramId;
    private float mViewportRatio;
    private int mViewPosHandle;
    private int mModelMatrixHandle;
    private int mMvpMatrixHandle;
    private float[] mViewPos = new float[] {0.0f, 0.0f, 6.0f}; // 相机位置
    private float[] mModelMatrix;
    private float[] mViewMatrix;
    private float[] mProjectionMatrix;
    private float[] mMvpMatrix;
    private float mTheta = 0;
    private float mThetaGap = 0.03f;
    private float mRadius = 1f;
    private float[] mTranslate = new float[] {0f, 0f, 0f};

    // 变换创建
    public void onTransformCreate(int programId) {
        mProgramId = programId;
        mViewPosHandle = GLES30.glGetUniformLocation(mProgramId, "uViewPos");
        mModelMatrixHandle = GLES30.glGetUniformLocation(mProgramId, "modelMatrix");
        mMvpMatrixHandle = GLES30.glGetUniformLocation(mProgramId, "mvpMatrix");
        mViewMatrix = getIdentityMatrix(16, 0);
        mMvpMatrix = getIdentityMatrix(16, 0);
        Matrix.setLookAtM(mViewMatrix, 0, mViewPos[0], mViewPos[1], mViewPos[2], 0, 0, 0, 0, 1, 0);
    }

    // 变换参数变换
    public void onTransformChange(int width, int height) {
        mViewportRatio = 1.0f * width / height;
        mProjectionMatrix = getIdentityMatrix(16, 0);
        Matrix.frustumM(mProjectionMatrix, 0, -mViewportRatio, mViewportRatio, -1, 1, 3, 10);
    }

    // 变换执行
    public void onTransformExecute() {
        mModelMatrix = getIdentityMatrix(16, 0);
        mTheta = mTheta > 360 ? mTheta - 360 + mThetaGap : mTheta + mThetaGap;
        mTranslate[0] = (float) (mRadius * Math.cos(mTheta));
        mTranslate[2] = (float) (mRadius * Math.sin(mTheta));
        Matrix.translateM(mModelMatrix, 0, mTranslate[0], mTranslate[1], mTranslate[2]);
        // 计算MVP变换矩阵: mvpMatrix = projectionMatrix * viewMatrix * modelMatrix
        float[] tempMatrix = new float[16];
        Matrix.multiplyMM(tempMatrix, 0, mViewMatrix, 0, mModelMatrix, 0);
        Matrix.multiplyMM(mMvpMatrix, 0, mProjectionMatrix, 0, tempMatrix, 0);
        GLES30.glUniformMatrix4fv(mModelMatrixHandle, 1, false, mModelMatrix, 0);
        GLES30.glUniformMatrix4fv(mMvpMatrixHandle, 1, false, mMvpMatrix, 0);
        GLES30.glUniform3f(mViewPosHandle, mViewPos[0], mViewPos[1], mViewPos[2]);
    }

    private float[] getIdentityMatrix(int size, int offset) {
        float[] matrix = new float[size];
        Matrix.setIdentityM(matrix, offset);
        return matrix;
    }
}

        ShaderUtils.java

package com.zhyan8.light.utils;

import android.content.res.Resources;
import android.opengl.GLES30;
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;

public class ShaderUtils {
    //创建程序id
    public static int createProgram(Resources resources, int vertexShaderResId, int fragmentShaderResId) {
        final int vertexShaderId = compileShader(resources, GLES30.GL_VERTEX_SHADER, vertexShaderResId);
        final int fragmentShaderId = compileShader(resources, GLES30.GL_FRAGMENT_SHADER, fragmentShaderResId);
        return linkProgram(vertexShaderId, fragmentShaderId);
    }

    //通过外部资源编译着色器
    private static int compileShader(Resources resources, int type, int shaderId){
        String shaderCode = readShaderFromResource(resources, shaderId);
        return compileShader(type, shaderCode);
    }

    //通过代码片段编译着色器
    private static int compileShader(int type, String shaderCode){
        int shader = GLES30.glCreateShader(type);
        GLES30.glShaderSource(shader, shaderCode);
        GLES30.glCompileShader(shader);
        return shader;
    }

    //链接到着色器
    private static int linkProgram(int vertexShaderId, int fragmentShaderId) {
        final int programId = GLES30.glCreateProgram();
        //将顶点着色器加入到程序
        GLES30.glAttachShader(programId, vertexShaderId);
        //将片元着色器加入到程序
        GLES30.glAttachShader(programId, fragmentShaderId);
        //链接着色器程序
        GLES30.glLinkProgram(programId);
        return programId;
    }

    //从shader文件读出字符串
    private static String readShaderFromResource(Resources resources, int shaderId) {
        InputStream is = resources.openRawResource(shaderId);
        BufferedReader br = new BufferedReader(new InputStreamReader(is));
        String line;
        StringBuilder sb = new StringBuilder();
        try {
            while ((line = br.readLine()) != null) {
                sb.append(line);
                sb.append("\n");
            }
            br.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
        return sb.toString();
    }
}

        ArraysUtils.java

package com.zhyan8.light.utils;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;

public class ArraysUtils {
    public static FloatBuffer getFloatBuffer(float[] floatArr) {
        FloatBuffer fb = ByteBuffer.allocateDirect(floatArr.length * Float.BYTES)
            .order(ByteOrder.nativeOrder())
            .asFloatBuffer();
        fb.put(floatArr);
        fb.position(0);
        return fb;
    }
}

        vertex_shader.glsl

attribute vec4 aPosition; // 顶点坐标
attribute vec3 aNormal; // 法线向量
uniform vec3 uViewPos; // 相机坐标
uniform vec3 uLightPos; // 光源坐标
uniform vec4 uModelColor; // 模型颜色
uniform vec3 uAmbientLightColor; // 环境光颜色
uniform vec3 uLightColor; // 光源颜色(漫反射、镜面反射)
uniform vec3 uMaterial; // 材质对环境光、漫反射光、镜面光的反射系数
uniform mat4 modelMatrix; // 模型变换
uniform mat4 mvpMatrix; // mvp矩阵变换
varying vec4 vColor; // 合成颜色

// 在片元着色器中计算光照会获得更好更真实的光照效果,但是会比较耗性能

// 环境光的计算
vec4 ambientColor() {
     vec3 ambient = uMaterial.x * uAmbientLightColor;
     return vec4(ambient, 1.0);
}

// 漫反射的计算
vec4 diffuseColor() {
     // 模型变换后的位置
     vec3 fragPos = (modelMatrix * aPosition).xyz;
     // 光照方向
     vec3 lightDirection = normalize(uLightPos - fragPos);
     // 模型变换后的法线向量
     vec3 normal = normalize(mat3(modelMatrix) * aNormal);
     // max(cos(入射角),0)
     float diff = max(dot(normal, lightDirection), 0.0);
     // 材质的漫反射系数*max(cos(入射角),0)*光照颜色
     vec3 diffuse = uMaterial.y * diff * uLightColor;
     return vec4(diffuse, 1.0);
}

// 镜面光计算,镜面光计算有两种方式,一种是冯氏模型,一种是Blinn改进的冯氏模型
// 冯氏模型: 材质的镜面反射系数*max(0,cos(反射向量与观察向量夹角)^粗糙度*光照颜色
// Blinn改进的冯氏模型: 材质的镜面反射系数*max(0,cos(半向量与法向量的夹角)^粗糙度*光照颜色
// 这里使用的是改进的冯氏模型,基于Half-Vector的计算方式
vec4 specularColor() {
     // 模型变换后的位置
     vec3 fragPos = (modelMatrix * aPosition).xyz;
     // 光照方向
     vec3 lightDirection = normalize(uLightPos - fragPos);
     // 模型变换后的法线向量
     vec3 normal = normalize(mat3(modelMatrix) * aNormal);
     // 观察方向
     vec3 viewDirection = normalize(uViewPos - fragPos);
     // 半向量(观察向量与光照向量的半向量)
     vec3 hafVector = normalize(lightDirection + viewDirection);
     // max(0,cos(半向量与法向量的夹角)^粗糙度
     float diff = pow(max(dot(normal, hafVector), 0.0), 4.0);
     vec3 specular = uMaterial.z * diff * uLightColor;
     return vec4(specular, 1.0);
}

void main() {
     gl_Position = mvpMatrix * aPosition;
     vColor = (ambientColor() + diffuseColor() + specularColor()) * uModelColor;
}

        fragment_shader.glsl

precision mediump float;
varying vec4 vColor;
void main() {
     gl_FragColor = vColor;
}

3 运行效果

猜你喜欢

转载自blog.csdn.net/m0_37602827/article/details/124184940