虚拟内存 :一个程序最多能使用多少内存?

虚拟内存


虚拟化技术中,操作系统设计了虚拟内存(理论上可以无限大的空间),受限于 CPU 的处理能力,通常 64bit CPU,就是 264 个地址。

虚拟化技术中,应用使用的是虚拟内存,操作系统管理虚拟内存和真实内存之间的映射。操作系统将虚拟内存分成整齐小块,每个小块称为一个页(Page)。之所以这样做,原因主要有以下两个方面。

  • 一方面应用使用内存是以页为单位,整齐的页能够避免内存碎片问题。
  • 另一方面,每个应用都有高频使用的数据和低频使用的数据。这样做,操作系统就不必从应用角度去思考哪个进程是高频的,仅需思考哪些页被高频使用、哪些页被低频使用。如果是低频使用,就将它们保存到硬盘上;如果是高频使用,就让它们保留在真实内存中。

如果一个应用需要非常大的内存,应用申请的是虚拟内存中的很多个页,真实内存不一定需要够用。

页(Page)和页表


接下来,我们详细讨论下这个设计。操作系统将虚拟内存分块,每个小块称为一个页(Page);真实内存也需要分块,每个小块我们称为一个 Frame。Page 到 Frame 的映射,需要一种叫作页表的结构。

上图展示了 Page、Frame 和页表 (PageTable)三者之间的关系。 Page 大小和 Frame 大小通常相等,页表中记录的某个 Page 对应的 Frame 编号。

页表也需要存储空间,比如虚拟内存大小为 10G, Page 大小是 4K,那么需要 10G/4K = 2621440 个条目。如果每个条目是 64bit,那么一共需要 20480K = 20M 页表。

操作系统在内存中划分出小块区域给页表,并负责维护页表。

虚拟内存

  在用户的视角里,每个进程都有自己独立的地址空间A进程的4GB和B进程4GB是完全独立不相关的,他们看到的都是操作系统虚拟出来的地址空间。但是呢,虚拟地址最终还是要落在实际内存的物理地址上进行操作的。操作系统就会通过页表的机制来实现进程的虚拟地址到物理地址的翻译工作。其中每一页的大小都是固定的。页表管理有两个关键点,分别是页面大小和页表级数。

页表维护了虚拟地址到真实地址的映射。每次程序使用内存时,需要把虚拟内存地址换算成物理内存地址,换算过程分为以下 3 个步骤: