有了别人的发动机,能不能仿造出来?

  很多人以为,有了别人的发动机,仿造是很容易的事情。说抄袭还不容易吗?

  • 抄袭很容易,你把别人的笔迹也抄下来试试?
  • 世界各国应该都有飞机,也就是都有发动机,有几个国家仿造出来了?可以讲,能造的一直是那几个国家。

  有了别人的发动机,为什么仿造不出来?先看看前提:

  • 首先要有工业体系。钢铁、合金、加工等等。
  • 要有科研体系(也就是有人)。个把人肯定是造不出来。
  • 要有强大的测量工具。

  以上都有了,是不是也容易造?当然不是。难点有:

  • 材料。材料这东西也不是说有就有。
  • 工艺。同样的材料,性能相差很大。
  • 公差。公差会累积,开始可能还行,到了后面就对不上了。
  • 决心。自己造资金多,风险大,性能差,别人有现成的,有谁能忍住不买?

以下内容是转载:

其实,逆向测绘航空发动机这个事情,不是不可以干,也不是不能干成功,但是落实到纸面上,可能并不是你想象的那样简单。

最容易的画皮:构型
测绘仿制,从名字上看就知道,整个过程中最容易让人想到的第一步,当然就是要在形状上把这台发动机模仿的一模一样。而且不仅仅是容易想到,事实上,也是相对来说比较容易做到的事情。

比如说,国外的很多发动机并不忌讳你看到它的内部结构,如果各位读者感兴趣,可以尝试以“发动机名称+结构”作为关键词,到搜索引擎上搜索,很容易就搜到这台发动机的图纸——甚至于清晰度很高。虽然对于很多不了解航空发动机结构的朋友,这些复杂的结构看着就晕,但是对于专业人士而言,发动机的结构几乎可以说是一目了然。


CFM56发动机的结构图网上到处都是
当然了,这些图纸距离真正可以用于加工生产的工程图纸还差的很远,所以只看这些图纸还是不太够,但是,我们还有一个东西叫做“三坐标测量仪”。简单说,这是一种在工业上广泛使用的用于测量物体形状的机械装置,可以通过探针测量物体的轮廓,精度极高。所以面对一台航空发动机,专业人士拆开来之后,用不了多久,就可以建立出这台航空发动机的高精度模型。


三坐标测量仪测量机械零件的轮廓


因此,仅仅模仿出来发动机的结构其实非常容易,但是这才是测绘仿制最基础的一步。

难以仿制的骨肉:材料与工艺
通过四处搜集到的图纸,还有用三坐标测量仪测量得到的详细形状数据,我们已经知道仿制对象的形状了。但是为了把发动机实际生产出来,你还要面对第二个问题,那就是用什么材料、这些材料又要具体用什么工艺来处理呢?


不同国家的不锈钢牌号
举个最简单的例子:就拿我们生活中最常见到的不锈钢来说,其种类可以说是五花八门,而且就算是同一牌号的不锈钢,具体的处理工艺不同,不锈钢的性质也是千差万别。所以想要根据图纸把这台发动机生产出来,那么你还需要知道发动机的材料是什么,以及在生产的过程中要对材料做什么处理,否则空有一堆图纸,那也是无从下手。

除此之外,发动机诸如叶片涂层、复杂结构的加工方法等等,也都是属于材料和工艺的范畴。这些因素也决定了航空发动机的性能和寿命,所以只有全面掌握这些跟材料和工艺有关的技术,才能够真正让发动机有血有肉,从图纸变成实物。


当然了,事情到这一步,其实还不算是“绝无可能”。假设你手头上已经有这么一台需要测绘仿制的发动机,那么把材料取出来,做理化分析、做力学试验,总是能够或多或少知道对应材料的组成和性质,而那些复杂结构的加工方法,通过机械工业的发展,假以时日,也是可以逐步掌握,所以这还不是最难的部分。

逆向测绘的时候,咱们的冶金工程师是可以通过各种手段,分析出零件材料的元素组成和含量的,这就提供了选材的参考依据。同时,也可以从零件的形状以及微观组织,推断出材料的基本成型的工艺。对于一些特种工艺的推断,则需要细心的工程师们对零件进行一轮详细的解剖分析,从而分析出零件所采用的焊接工艺、打孔工艺或者是涂层工艺。

驾驭不能的脾气:控制规律
请问,一台在研中的发动机已经上了高空台并且运转成功了,那么这台发动机是不是快要研制成功了?答案是:还差得远。

因为即便测试一切顺利,稳定运转的时候,发动机的推力、耗油率各项硬指标都合格了,但是你会发现,这台发动机的”脾气“并不是你能够掌握的。所以上了高空台之后,大量的时间可能都是要跟这台发动机慢慢磨合脾气,掌握该怎么控制好这台发动机:在特定的工况和工作环境下,想让它加减速的时候,要怎么调整供油量,又要怎么通过可调叶片控制发动机内流体的流动。

你要知道,任何一台机械,最害怕的事情就是“变工况”,因为工况变化的过程中,机械处于的状态叫做“非设计点”,所以发动机稳定状态下工作的再好,工况变化过程中出纰漏,那带来的影响可是比发动机性能不达标要严重得多,弄不好就是重大故障。

全权数字发动机控制装置
现在不少发动机都用上了全权数字发动机控制,也就是所谓的FADEC,即便你能够通过某种方式获取其中的控制规律,但这套控制规律也往往是适用于这台发动机原本装配的飞机的,你想要把发动机测绘仿制出来用到其他飞机上,不用想了,老老实实去摸这台发动机的控制规律吧,不然你驯服不了它。

把握不住的灵魂:控制标准
那么测绘仿制发动机最难的部分在哪里呢?要我说,作为一台结构极尽复杂的机械产品——这里要注意了,是需要投入生产的”产品“——最难的,其实是工业品生产的灵魂:控制标准。

举个例子:我们想要测绘仿制某一台发动机,然后把这台发动机上的一个零件拆下来测量了一下宽度:50mm。那么,我们在生产这台发动机的时候,这个零件生产为多宽的时候才是合格的?

机械产品都是有公差的
估计有读者朋友就要不屑一顾了:说50mm当然就是50mm了,难不成51mm也行?50≠51,难道当大家不识数吗?

其实这就是工业品的特点,因为受限于精度和成本,我们生产出来的所有东西都有一定的”公差“的,所以一个零件,虽然理论上我们需要它是50mm宽,但是实际上也许49-51mm,这个零件都可以满足使用的要求。

那么回到刚刚这个问题:测量宽度是50mm,那么多宽才算是合格?

首先,你不知道这台原版发动机在生产的时候,具体要求是什么。是一个要求宽度49mm的零件,生产的宽了一些,还是要求宽度是51mm的零件,生产的窄了一些呢?然后,你该怎么定这个公差?是48mm-52mm都算合格,还是必须49mm-51mm才算合格?

不要忘了,这样的参数,在发动机里面可能有成千上万个。你测绘仿制的对象,只是眼前的这一台,但是对于生产过程中,原版发动机有什么产生要求,你一无所知。

相类似的,你可以通过各种方式获得这台原版发动机各个零件的材料性能,但是轮到你生产的时候,材料要控制到什么水平才算是合格?太严格,成本过高或者根本就做不到,太宽松了,无论性能还是可靠性都是隐患。

所以这才是测绘仿制发动机,最难把握的,也是一台发动机的灵魂:控制标准。

4、开卷就能上清华?

造产品还是得有图纸的,这个没有争议对吧?

图纸是啥?图纸上标明了结构、尺寸,有时还添加有相关文字说明。

会不会由于汽车能做逆向研发,就认为航空发动机也可以?汽车在常温下工作,而现代航空发动机的燃烧室温度最高可以达到2000℃以上,涡轮温度在1500℃左右,尾喷口燃气虽然已经经过了一定冷却,温度也普遍超过500℃。

发动机的冷态图纸可以逆向测绘得到,热态图纸是不可得的。

发动机能够在如此高温之下工作,主要得益于特殊的高温耐热材料以及多种降温结构设计的综合运用。特殊的高温耐热材料虽然在高温下还能工作,但不代表材料性能还能保持像在常温下一样。

假设冷态装配图纸完美,热态下的变形不协调也是完全可能发生的。想要热态变形协调,发动机正常运转,各材料性能的了如指掌必不可少,尺寸链设计各种因素分析要面面俱到,飞行包线中的所有工况都能思虑周全,所有零件都不会设计失效。这些都是一张图纸解决不了的问题。

结 构
谈论飞机或者发动机的结构都太大了,我从一个零件出发,给大家举个例子——发动机压气机盘。

CFM56-3高压压气机1,2级轮盘结构相比之前做过改进,将叶片榫头加长,相应的轮盘厚度也加大,如图所示。

那么问题来了:压气机盘为什么盘心厚边缘薄?

在盘的设计中有个概念叫做“等强度盘”,如果设计人员希望发动机的转子轮盘周向力和径向力相等或近似相等,则盘的结构必然会中间厚边缘薄。

为什么榫头厚度增大后,盘的形状需要随动?

一个转子轮盘的设计只需要考虑单个盘么?显然不是。

发动机是一个系统工程产品,而转子系统需要被视为一体,进行转子动力学设计。转子的几何结构特征直接影响转子的质量和刚度,进而影响转子的临界转速。在临界转速下工作的转子系统,轴心轨迹的幅值增大,作用在静子支撑结构上的动载荷增大,容易使转子产生碰磨,静子产生疲劳,所以转子轮盘的几何结构设计必须避开转子的临界转速。

榫头质量增大,质心发生偏移,为了使转子系统仍能处于平衡,需要调整盘的形状。

逆向测绘能带来的很大一个好处是:参考机型优化后的结构在提示我们,之前的设计可能有待改进。

尺 寸
航空发动机发展到今天,制造难度早就不是弄个样机出来了。一台发动机高耗油率,低推力,用两天修三天,你试试看能造出来么?分分钟的事情好么~

商用飞机或发动机造出来后最终是要推向市场,与现有产品进行市场竞争的,而不是堆在仓库落灰。商用飞机或发动机需要在国际市场上售卖,中国民用航空局(CAAC)、欧洲航空安全局(EASA)和美国航空管理局 (FAA)三大适航取证了解一下?

再放眼看看,如今世界最大的商用航空发动机GE9X,TiAl叶片,CMC陶瓷基复合材料静子件,整体叶盘等技术,哪一项不是凝聚着GE工程师们多年的先进技术积累?

想要与先进的工业产品竞争,优化设计是必不可少的工作流程。多学科设计优化一定有人听过。1991年,美国航空航天协会成立了专门的MDO(Multidisciplinary Design Optimization)技术委员会,发表了第一份MDO白皮书,指出MDO是追求飞行器高综合性能指标的必然产物。

如果我们试图对上图中的压气机转子轮盘,考虑其强度、振动特性、高周疲劳寿命进行多学科优化设计(此处暂且先忽略他的安全性、可靠性、稳健性、热机疲劳寿命、低周疲劳寿命、蠕变特性、损伤容限等等内容),需要经过一通建模分析和优化,而建模分析一定需要设置载荷。

载荷如何确定?逆向测绘的图纸上能绘出来载荷吗?没有载荷怎么做优化?一首《没那么简单》送给各位……

尺寸不仅仅是半径、长度,还包含公差、表面粗糙度等内容。

仍然以转子轮盘为例,转子轮盘的尺寸公差及定位公差会导致转子存在不同程度的质量偏心,在转子高速旋转时产生附加的不平衡力和力矩,使得转子振幅增大。

不合理的配合公差在连续的工作状态变化后,容易在接触面产生接触损伤,积累到一定程度后也会产生附加的不平衡量和连接刚度的变化,进而影响转子的临界转速和振动幅值。

正因为公差如此重要,所以公差配合是一门独立的课程。

“橘生淮南则为橘,生于淮北则为枳,叶徒相似,其实味不同。所以然者何?水土异也。”

一棵橘树尚有淮南淮北差异,莫论一台航空发动机外国造与中国造了。

你的图纸跟我的图纸是一样的,但是产品从一开始的风扇叶片处就不一样了:材料不一样,配合公差不一样,环境湿度不一样,转速不一样,气动效率不一样,压缩比不一样,装配技术不一样……这些特征都不是长得一样能解决的问题。

发动机推力性能不达标只是试车过程中的开胃菜,强度等性能不达标够设计人员喝一壶了,适航取证时所涉及到的种类庞杂又细致入微的各种性能不能满足要求,才是发动机研制过程中的满汉全席。

知其然,知其所以然,所有的航空发动机设计人员才能在试制投料时充满信心;才能在排故的时候从容应对,知道从何下手;才能知道一代代产品性能的优化应该从哪些角度进行。

猜你喜欢

转载自blog.csdn.net/quantum7/article/details/125840443