1.JVM内存布局
内存在操作系统终端中是非常重要的系统资源,是硬盘和 CPU 的中间仓库及桥梁,承载着操作系统和应用程序的实时运行。同样,内存相对于JVM来说也是,根据java虚拟机规范,JVM 内存布局规定了Java在运行过程中内存申请、分配、管理的策略,保证了 JVM 的高效稳定运行。
上图描述的比较经典的JVM五大内存布局区域,注意:框区的大小并不是代表每个内存区域的大小,仅仅是为了演示使用。
如果按照内存区域是否共享来划分的话,如下图所示:
通过这两个图,应该对JVM的内存分布有了一个大致的了解了。
下面让我们来了解下各个区域。
1.1.程序计数器
程序计数器(Program Counter Register)是一块较小的内存空间。是线程私有的。它可以看作是当前线程所执行的字节码的行号指示器。比如下面的字节码内容,在每个字节码前面都有一个数字(行号),我们可以认为它就是程序计数器存储的内容。

记录这些数字(指令地址)有啥用呢,我们知道 Java 虚拟机的多线程是通过线程轮流切换并分配处理器的时间来完成的,在任何一个时刻,一个处理器只会执行一个线程,如果这个线程被分配的时间片执行完了(线程被挂起),处理器会切换到另外一个线程执行,当下次轮到执行被挂起的线程(唤醒线程)时,怎么知道上次执行到哪了呢,通过记录在程序计数器中的行号指示器即可知道,所以程序计数器的主要作用是记录线程运行时的状态,方便线程被唤醒时能从上一次被挂起时的状态继续执行。需要注意的是,程序计数器是唯一一个在 Java 虚拟机规范中没有规定任何 OOM 情况的区域,所以这块区域也不需要进行 GC的。
因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储。每个线程在创建后,都会产生自己的程序计数器和栈帧,程序计数器用来存放执行指令的偏移量和行号指示器等,线程执行或恢复都要依赖程序计数器。 此区域也是JVM内存中有且仅有的不会发生内存溢出异常的区域。
1.2.Java虚拟机栈
Java虚拟机栈是JVM内存区域中最具有迷惑性的一个区域,从字面意思理解还以为这个是多线程共享的呢,而其实是恰恰相反的。
对于每一个线程,JVM 都会在线程被创建的时候,创建一个单独的栈,这就是我们所说的Java虚拟机栈。也就是说虚拟机栈的生命周期和线程是一致,并且是线程私有的。除了 Native 方法以外,Java 方法都是通过 Java 虚拟机栈来实现调用和执行过程的(需要程序技术器、堆、元空间内数据的配合)。所以 Java 虚拟机栈是虚拟机执行引擎的核心之一。而 Java 虚拟机栈中出栈入栈的元素就称为「栈帧」。
栈帧(Stack Frame)是用于支持虚拟机进行方法调用和方法执行的数据结构。栈帧存储了方法的局部变量表、操作数栈、动态连接和方法返回地址等信息。每一个方法从调用至执行完成的过程,都对应着一个栈帧在虚拟机栈里从入栈到出栈的过程。
①栈对应线程,栈帧对应方法
②栈帧大小是在编译期确定,不受运行期数据影响
在活动线程中, 只有位于栈顶的帧才是有效的, 称为当前栈帧。正在执行的方法称为当前方法。在执行引擎运行时, 所有指令都只能针对当前栈帧进行操作。而 StackOverflowError 表示请求的栈溢出, 导致内存耗尽, 通常出现在递归方法中。如下实例所示:
public class JavaStack {
//无限递归,导致虚拟机栈溢出
public static int f(int num) {
num++;
return f(num);
}
public static void main(String[] args) {
f(0);
}
}
虚拟机栈通过 pop 和 push 的方式,对每个方法对应的活动栈帧进行运算处理,方法正常执行结束,肯定会跳转到另一个栈帧上。在执行的过程中,如果出现了异常,会进行异常回溯,返回地址通过异常处理表确定。
可以看出栈帧在整个 JVM 体系中的地位颇高。栈帧的大概示意图如下:
通过示意图我们对栈帧有了一个轮廓上的认识,下面对其一一介绍:
①局部变量表
局部变量表(Local Variable),从字面意思看就是存储局部变量的一个表。从术语上来讲局部变量表代表的是一片连续的内存空间,用来存放方法参数,以及方法内定义的局部变量,存放着编译期间已知的数据类型(八大基本类型和对象引用(reference类型)。
reference类型与基本类型不同的是它不等同本身,即使是String,内部也是char数组组成,它可能是指向一个对象起始位置指针,也可能指向一个代表对象的句柄或其他与该对象有关的位置。举例说明:
public int fun(int a, int b){
Object obj = new Object();
return a + b;
}
如果局部变量是 Java 的 8 种基本基本数据类型,则存在局部变量表中。如果是引用类型,如 new 出来的 String,局部变量表中存的是引用,而实例在堆中。如下示意图所示:
关于局部变量表需要重点注意的是:局部变量表所需要的内存空间在编译期间完成分配,当进入一个方法时,这个方法在栈中需要分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表大小。
②操作数栈
操作数栈(Operand Stack)看名字可以知道是一个栈结构,是操作变量的内存模型。Java 虚拟机对执行引擎解释为为“基于栈的执行引擎”,其中所指的“栈”就是操作数栈。当 JVM 为方法创建栈帧的时候,在栈帧中为方法创建一个操作数栈,保证方法内指令可以完成工作。当方法刚开始执行的时候,栈是空的,当方法执行过程中,各种字节码指令往栈中存取数据。举例说明:
public class OperandStackTest {
public int sum(int a, int b) {
return a + b;
}
}
通过javah编译生成.class文件之后,再通过javap返回编译查看汇编指令:
public int sum(int, int);
flags: ACC_PUBLIC
Code:
stack=2, locals=3, args_size=3 //最大栈深度为2 局部变量个数为3
0: iload_1 // 局部变量1 压栈
1: iload_2 // 局部变量2 压栈
2: iadd // 栈顶两个元素相加,计算结果压栈
3: ireturn //返回
}
③动态链接
每个栈帧中都包含一个在常量池中对当前方法的引用, 目的是支持方法调用过程的动态连接。
④方法返回地址
方法执行时有两种退出情况:
(1)正常退出,即正常执行到任何方法的返回字节码指令,如 RETURN、IRETURN、ARETURN 等
(2)异常退出
无论何种退出情况,都将返回至方法当前被调用的位置。方法退出的过程相当于弹出当前栈帧,退出可能有三种方式:
(1)返回值压入上层调用栈帧
(2)异常信息抛给能够处理的栈帧
(3)PC 计数器指向方法调用后的下一条指令
③Java本地方法栈
本地方法栈(Native Method Stack)与虚拟机栈所发挥的作用是非常相似的,它们之间的区别不过是虚拟机栈为虚拟机执行 Java 方法(也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。在虚拟机规范中对本地方法栈中方法使用的语言、使用方式与数据结构并没有强制规定,因此具体的虚拟机可以自由实现它。甚至有的虚拟机(譬如 Sun HotSpot 虚拟机)直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈区域也会抛出 StackOverflowError 和 OutOfMemoryError 异常。
④堆区(Heap)
堆是 OOM 故障最主要的发生区域。它是内存区域中最大的一块区域,被所有线程共享,存储着几乎所有的实例对象、数组。所有的对象实例以及数组都要在堆上分配,但是随着 JIT 编译器的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化发生,所有的对象都分配在堆上也渐渐变得不是那么“绝对”了。
Java 堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC 堆”。从内存回收的角度来看,由于现在收集器基本都采用分代收集算法,所以 Java 堆中还可以细分为:新生代和老年代。再细致一点的有 Eden 空间、From Survivor 空间、To Survivor 空间等。从内存分配的角度来看,线程共享的 Java 堆中可能划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer,TLAB)。不过无论如何划分,都与存放内容无关,无论哪个区域,存储的都仍然是对象实例,进一步划分的目的是为了更好地回收内存,或者更快地分配内存。根据虚拟机规范,Java堆可以存在物理上不连续的内存空间,就像磁盘空间只要逻辑是连续的即可。
通过设置如下参数,可以设定堆区的初始值和最大值,比如 -Xms256M -Xmx 1024M,其中 -X 这个字母代表它是 JVM 运行时参数,ms 是 memory start 的简称,中文意思就是内存初始值,mx 是 memory max 的简称,意思就是最大内存。
注意,在通常情况下,服务器在运行过程中,堆空间不断地扩容与回缩,会形成不必要的系统压力所以在线上生产环境中 JVM 的 Xms 和 Xmx 会设置成同样大小,避免在 GC 后调整堆大小时带来的额外压力。
JVM堆的默认空间分配,示意图如下:
⑤方法区和运行时常量池
(1)方法区
方法区同堆一样,是所有线程共享的内存区域,为了区分堆,又被称为非堆。
方法区用于存储已被虚拟机加载的类信息、常量、静态变量等,如static修饰的变量加载类的时候就被加载到方法区中。
(2)运行时常量池
是方法区的一部分,class文件除了有类的字段、接口、方法等描述信息之外,还有常量池用于存放编译期间生成的各种字面量和符号引用。
(3)需要注意的点
这块知识我们需要掌握的一个重点就是在jdk1.7之前字符常量池是存放在方法区中的,但是在jdk1.7及之后就从方法区中移除了字符串常量池,放在了堆中。方法区也是多个线程共享的,存放已经被虚拟机加载的类信息,常量和静态变量等数据信息,在方法区中还存在一个运行时常量池,这个是值得好好研究的。首先是Class文件中除了有类的字段,方法和接口等描述信息之外还有一个常量池,这些内容会在类加载后进入方法区的运行时常量池。而这个常量池是用于存放编译阶段生成的各种字面量和符号引用。
2.堆和栈
①栈(stack):是一个先进后出的数据结构,先分配的内存必定后释放。一般由系统自动分配,通常用于保存方法(函数)中的参数、局部变量等,自动清除。
在java中,JVM的栈记录了方法的调用,每个线程拥有一个栈。在线程运行过程中,执行到一个新方法调用,就在栈中增加一个内存单元,即帧(frame)。在frame中,保存有该方法调用的参数、局部变量和返回地址。然而JAVA中的局部变量只能是基本类型或对象的引用。所以在栈中只存放基本类型和对象的引用,引用的对象保存在堆中。当某方法运行结束时,该方法对应的frame将会从栈中删除,frame中所有的局部变量和参数所占有的空间也随之释放。线程回到原方法继续执行,当所有的栈都清空的时候,程序也就随之运行结束。因此栈可以自行清除不用的内存空间。
总结一下:在java中,函数中定义的一些基本类型的变量和对象的引用变量都在函数的栈内存中分配。当在一段代码块定义一个变量时,Java就在栈中为这个变量分配内存空间,当超过变量的作用域后,Java会自动释放掉为该变量所分配的内存空间,该内存空间可以立即被另作他用。
②堆(heap):一个运行时数据区,是一个可动态申请的内存空间(其记录空闲内存空间的链表由操作系统维护),其中的内存在不需要时可以回收,以分配给新的内存请求,其内存中的数据是无序的,即先分配的和随后分配的内存并没有什么必然的位置关系,释放时也可以没有先后顺序。一般由使用者自由分配,malloc分配的就是堆,需要手动释放。
在java中,所有使用new xxx()构造出来的对象都在堆中存储,当垃圾回收器检测到某对象未被引用,则自动销毁该对象,不需要程序代码来显示的释放。所以,理论上说java中对象的生存空间是没有限制的,只要有引用类型指向它,则它就可以在任意地方被使用。也就是说,堆内存用来存放由new创建的对象和数组,在堆中分配的内存,由Java虚拟机的自动垃圾回收器来管理。
在堆中产生了一个数组或对象后,还可以在栈中定义一个特殊的变量,让栈中的这个变量的取值等于数组或者对象在堆内存中的首地址,栈中的这个变量就成了数组或对象的引用变量。引用变量就相当于是为数组或对象起的一个名称,以后就可以在程序中使用栈中的引用变量来访问堆中的数组或对象。
对于堆内存,堆存放着普通变量,在JAVA中堆内存不会随着方法的结束而清空,所以在方法中定义了局部变量,在方法结束后该变量依然存活在堆中。因此,虽然栈可以自行清除不用的内存空间,但是如果我们不停的创建新对象,堆内存空间就会被消耗尽。所以JAVA引入了垃圾回收去处理堆内存的回收,但如果对象一直被引用无法回收,造成内存的浪费,无法再被使用,所以对象无法被GC回收就是造成内存泄露的原因。
③栈(stack)与堆(heap)都是Java用来在Ram中存放数据的地方。与C++不同,Java自动管理栈和堆,程序员不能直接地设置栈或堆。
栈的优势是,存取速度比堆要快,仅次于直接位于CPU中的寄存器。但缺点是,存在栈中的数据大小与生存期必须是确定的,缺乏灵活性。另外,栈数据可以共 享。
堆的优势是,可以动态地分配内存大小,生存期也不必事先告诉编译器,Java的垃圾收集器会自动收走这些不再使用的数据。但缺点是,由于要在运行时动态分配内存,存取速度较慢。
总结一下:
下面针对图中列出的数据类型进行说明,只有了解了我们申请的数据在哪里,才能更好掌控我们自己的程序。
①对象实例数据
实际上是保存对象实例的属性、属性的类型和对象本身的类型标记等,但是不保存实例的方法。实例的方法是属于数据指令,是保存在Stack里面,也就是上面表格里面的类方法。
对象实例在Heap中分配好以后,会在stack中保存一个4字节的Heap内存地址,用来查找对象的实例,因为在Stack里面会用到Heap的实例,特别是调用实例的时候需要传入一个this指针。
②方法内部变量
类方法的内部变量分为两种情况:简单类型保存在Stack中;对象类型在Stack中保存地址,在Heap 中保存值。
③非静态方法和静态方法
非静态方法有一个隐含的传入参数,这个参数是dalvik虚拟机传进去的,这个隐含参数就是对象实例在Stack中的地址指针。因此非静态方法(在Stack中的指令代码)总是可以找到自己的专用数据(在Heap 中的对象属性值)。当然,非静态方法也必须获得该隐含参数,因此非静态方法在调用前,必须先new一个对象实例,获得Stack中的地址指针,否则dalvik虚拟机将无法将隐含参数传给非静态方法。
静态方法没有隐含参数,因此也不需要new对象,只要class文件被ClassLoader load进入JVM的Stack,该静态方法即可被调用。所以我们可以直接使用类名调用类的方法。当然此时静态方法是存取不到Heap 中的对象属性的。
④静态属性和动态属性
静态属性是保存在Stack中的,而动态属性保存在Heap 中。正因为都是在Stack中,而Stack中指令和数据都是定长的,因此很容易算出偏移量,所以类方法(静态和非静态)都可以访问到类的静态属性。也正因为静态属性被保存在Stack中,所以具有了全局属性。
3.数据类型
Java中的数据类型有两种。
①一种是基本类型,共有8种,即int, short, long, byte, float, double, boolean, char(注意,并没有string的基本类型)。
这种类型的定义是通过类似int a = 3; long b = 255L;的形式来定义的,称为自动变量。注意,自动变量存的是字面值,不是类的实例,即不是类的引用,这里并没有类的存在。如int a = 3; 这里的a是一个指向int类型的引用,指向3这个字面值。这些字面值的数据,由于大小可知,生存期可知(这些字面值固定定义在某个程序块里面,程序块退出后,字段值就消失了),出于追求速度的原因,就存在于栈中。
栈有一个很重要的特殊性,就是存在栈中的数据可以共享。假设我们同时定义:
int a = 3;
int b = 3;
编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找有没有字面值为3的地址,没找到,就开辟一个存放3这个字面值的地址,然后将a指向3的地址。接着处理int b = 3;在创建完b的引用变量后,由于在栈中已经有3这个字面值,便将b直接指向3的地址。这样,就出现了a与b同时均指向3的情况。
特别注意的是,这种字面值的引用与类对象的引用不同。假定两个类对象的引用同时指向一个对象,如果一个对象引用变量修改了这个对象的内部状态,那么另 一个对象引用变量也即刻反映出这个变化。相反,通过字面值的引用来修改其值,不会导致另一个指向此字面值的引用的值也跟着改变的情况。如上例,我们定义完 a与b的值后,再令a=4;那么,b不会等于4,还是等于3。在编译器内部,遇到a=4;时,它就会重新搜索栈中是否有4的字面值,如果没有,重新开辟地址存放4的值;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b的值。
②第二种是包装类数据,如Integer, String, Double等将相应的基本数据类型包装起来的类。
这些类数据全部存在于堆中,Java用new()语句来显示地告诉编译器,在运行时才根据需要动态创 建,因此比较灵活,但缺点是要占用更多的时间。
String是一个特殊的包装类数据。既可以用String str = new String("abc");的形式来创建,也可以用String str = "abc";的形式来创建(作为对比,在JDK 5.0之前,你从未见过Integer i = 3;的表达式,因为类与字面值是不能通用的,除了String。而在JDK 5.0中,这种表达式是可以的!因为编译器在后台进行Integer i = new Integer(3)的转换)。前者是规范的类的创建过程,即在Java中,一切都是对象,而对象是类的实例,全部通过new()的形式来创建。Java 中的有些类,如DateFormat类,可以通过该类的getInstance()方法来返回一个新创建的类,似乎违反了此原则。其实不然。该类运用了单例模式来返回类的实例,只不过这个实例是在该类内部通过new()来创建的,而getInstance()向外部隐藏了此细节。那为什么在String str = "abc";中,并没有通过new()来创建实例,是不是违反了上述原则?其实没有。 关于String str = "abc"的内部工作。Java内部将此语句转化为以下几个步骤:
(1)先定义一个名为str的对String类的对象引用变量:String str;
(2)在栈中查找有没有存放值为"abc"的地址,如果没有,则开辟一个存放字面值为"abc"的地址,接着创建一个新的String类的对象o,并将o的字符串值指向这个地址,而且在栈中这个地址旁边记下这个引用的对象o。如果已经有了值为"abc"的地址,则查找对象o,并返回o的地址。
(3)将str指向对象o的地址。
值得注意的是,一般String类中字符串值都是直接存值的。但像String str = "abc";这种场合下,其字符串值却是保存了一个指向存在栈中数据的引用!
为了更好地说明这个问题,我们可以通过以下的几个代码进行验证。
String str1 = "abc";
String str2 = "abc";
System.out.println(str1==str2); //true
注意,我们这里并不用str1.equals(str2);的方式,因为这将比较两个字符串的值是否相等。==号,根据JDK的说明,只有在两个引用都指向了同一个对象时才返回真值。而我们在这里要看的是,str1与str2是否都指向了同一个对象。
结果说明,JVM创建了两个引用str1和str2,但只创建了一个对象,而且两个引用都指向了这个对象。
我们再来更进一步,将以上代码改成:
String str1 = "abc";
String str2 = "abc";
str1 = "bcd";
System.out.println(str1 + "," + str2); //bcd, abc
System.out.println(str1==str2); //false
这就是说,赋值的变化导致了类对象引用的变化,str1指向了另外一个新对象!而str2仍旧指向原来的对象。上例中,当我们将str1的值改为"bcd"时,JVM发现在栈中没有存放该值的地址,便开辟了这个地址,并创建了一个新的对象,其字符串的值指向这个地址。
事实上,String类被设计成为不可改变(immutable)的类。如果你要改变其值,可以,但JVM在运行时根据新值悄悄创建了一个新对象,然后将这个对象的地址返回给原来类的引用。这个创建过程虽说是完全自动进行的,但它毕竟占用了更多的时间,在对时间要求比较敏感的环境中,会带有一定的不良影响。
再修改原来代码:
String str1 = "abc";
String str2 = "abc";
str1 = "bcd";
String str3 = str1;
System.out.println(str3); //bcd
String str4 = "bcd";
System.out.println(str1 == str4); //true
str3这个对象的引用直接指向str1所指向的对象(注意,str3并没有创建新对象)。当str1改完其值后,再创建一个String的引用 str4,并指向因str1修改值而创建的新的对象。可以发现,这回str4也没有创建新的对象,从而再次实现栈中数据的共享。
我们再接着看以下的代码:
String str1 = new String("abc");
String str2 = "abc";
System.out.println(str1==str2); //false
创建了两个引用。创建了两个对象。两个引用分别指向不同的两个对象。
String str1 = "abc";
String str2 = new String("abc");
System.out.println(str1==str2); //false
创建了两个引用。创建了两个对象。两个引用分别指向不同的两个对象。
以上两段代码说明,只要是用new()来新建对象的,都会在堆中创建,而且其字符串是单独存值的,即使与栈中的数据相同,也不会与栈中的数据共享。
数据类型包装类的值不可修改。不仅仅是String类的值不可修改,所有的数据类型包装类都不能更改其内部的值。
总结一下:
①我们在使用诸如String str = "abc";的格式定义类时,总是想当然地认为,我们创建了String类的对象str。担心陷阱!对象可能并没有被创建!唯一可以肯定的是,指向 String类的引用被创建了。至于这个引用到底是否指向了一个新的对象,必须根据上下文来考虑,除非你通过new()方法来显示地创建一个新的对象。因 此,更为准确的说法是,我们创建了一个指向String类的对象的引用变量str,这个对象引用变量指向了某个值为"abc"的String类。清醒地认识到这一点对排除程序中难以发现的bug是很有帮助的。
②使用String str = "abc";的方式,可以在一定程度上提高程序的运行速度,因为JVM会自动根据栈中数据的实际情况来决定是否有必要创建新对象。而对于String str = new String("abc");的代码,则一概在堆中创建新对象,而不管其字符串值是否相等,是否有必要创建新对象,从而加重了程序的负担。
③当比较包装类里面的数值是否相等时,用equals()方法;当测试两个包装类的引用是否指向同一个对象时,用==。
④由于String类的immutable性质,当String变量需要经常变换其值时,应该考虑使用StringBuffer类,以提高程序效率。
3.内存泄露和内存溢出
内存泄露和内存溢出这两个概念很容易混淆,要注意区分。
①内存泄露
程序在向系统申请分配内存空间后(new),使用完毕后没有释放,结果导致一直占据该内存单元,任何程序都无法再使用该内存单元,直到程序结束。这就是内存泄露。
②内存溢出
程序向系统申请的内存空间超出了系统能给的。比如内存只能分配一个int类型,程序却要塞给他一个long类型,系统就会出现oom。
大量的内存泄露会导致内存溢出。