携手创作,共同成长!这是我参与「掘金日新计划 · 8 月更文挑战」的第5天,点击查看活动详情
一、基于PaddleClas的NUS-WIDE-SCENE多标签图像分类
1.情况简介
该项目基于PaddleClas,主要完成多标签分类的训练、评估、预测的体验过程。
2.数据集
该项目数据集为NUS-WIDE-SCENE的子集,需要对图像进行分类,具有36个标签。
- 该子集下载地址: paddle-imagenet-models-name.bj.bcebos.com/data/NUS-SC…
- NUS-WIDE-SCENE数据集下载地址:lms.comp.nus.edu.sg/wp-content/…
标签有:
airport beach bridge buildings castle cityscape clouds frost
- garden
glacier grass harbor house lake moon mountain nighttime ocean plants railroad rainbow reflection road sky snow street sunset temple town valley water waterfall window
二、PaddleClas安装
1.PaddleClas下载
从gitee下载,具有较快的速度,同时depth=1,只下载默认的版本。
!git clone https://gitee.com/paddlepaddle/PaddleClas.git --depth=1
Cloning into 'PaddleClas'...
remote: Enumerating objects: 2019, done.[K
remote: Counting objects: 100% (2019/2019), done.[K
remote: Compressing objects: 100% (1256/1256), done.[K
remote: Total 2019 (delta 1001), reused 1333 (delta 725), pack-reused 0[K
Receiving objects: 100% (2019/2019), 86.17 MiB | 7.50 MiB/s, done.
Resolving deltas: 100% (1001/1001), done.
Checking connectivity... done.
2.PaddleClas安装
主要完成相关依赖库安装等
!pip install -r ~/PaddleClas/requirements.txt >log.log
!pip install -e ~/PaddleClas >log.log
[33mWARNING: You are using pip version 22.0.4; however, version 22.1.2 is available.
You should consider upgrading via the '/opt/conda/envs/python35-paddle120-env/bin/python -m pip install --upgrade pip' command.[0m[33m
[0m[33mWARNING: You are using pip version 22.0.4; however, version 22.1.2 is available.
You should consider upgrading via the '/opt/conda/envs/python35-paddle120-env/bin/python -m pip install --upgrade pip' command.[0m[33m
[0m
三、数据集准备
1.数据解压缩
主要完成 数据集下载、解压缩 等。
%cd ~/PaddleClas
!mkdir dataset/NUS-WIDE-SCENE
%cd dataset/NUS-WIDE-SCENE
!wget https://paddle-imagenet-models-name.bj.bcebos.com/data/NUS-SCENE-dataset.tar
!tar -xf NUS-SCENE-dataset.tar
/home/aistudio/PaddleClas
/home/aistudio/PaddleClas/dataset/NUS-WIDE-SCENE
--2022-06-20 11:10:05-- https://paddle-imagenet-models-name.bj.bcebos.com/data/NUS-SCENE-dataset.tar
Resolving paddle-imagenet-models-name.bj.bcebos.com (paddle-imagenet-models-name.bj.bcebos.com)... 182.61.200.195, 182.61.200.229, 2409:8c04:1001:1002:0:ff:b001:368a
Connecting to paddle-imagenet-models-name.bj.bcebos.com (paddle-imagenet-models-name.bj.bcebos.com)|182.61.200.195|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 810639872 (773M) [application/x-tar]
Saving to: ‘NUS-SCENE-dataset.tar’
NUS-SCENE-dataset.t 100%[===================>] 773.09M 36.1MB/s in 19s
2022-06-20 11:10:24 (39.7 MB/s) - ‘NUS-SCENE-dataset.tar’ saved [810639872/810639872]
2.数据查看
其中第一列为图像文件名,其后36列分别为garden glacier grass harbor house lake moon mountain nighttime ocean plants railroad rainbow reflection road sky snow street sunset temple town valley water waterfall window 标签,为1则是,0否。
!head NUS-SCENE-dataset/multilabel_train_list.txt
0045_845243484.jpg 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0
0229_433478352.jpg 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0
0322_2093820806.jpg 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0
0463_2483322510.jpg 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0517_2283920455.jpg 0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0
0006_2074187535.jpg 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0034_509197470.jpg 0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
0064_2591840477.jpg 0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0
0208_465647043.jpg 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1
0211_2490834700.jpg 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0
from PIL import Image
%cd ~
img=Image.open("PaddleClas/dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images/0006_2074187535.jpg")
img.show()
/home/aistudio
四、模型训练
1.训练配置
配置文件为 PaddleClas/ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/
device: gpu
save_interval: 1
eval_during_train: True
eval_interval: 1
epochs: 10
print_batch_step: 10
use_visualdl: True
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference
use_multilabel: True
# model architecture
Arch:
name: MobileNetV1
class_num: 33
pretrained: True
# loss function config for traing/eval process
Loss:
Train:
- MultiLabelLoss:
weight: 1.0
Eval:
- MultiLabelLoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Cosine
learning_rate: 0.1
regularizer:
name: 'L2'
coeff: 0.00004
# data loader for train and eval
DataLoader:
Train:
dataset:
name: MultiLabelDataset
image_root: ./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images/
cls_label_path: ./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/multilabel_train_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- RandCropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 256
drop_last: False
shuffle: True
loader:
num_workers: 0
use_shared_memory: True
Eval:
dataset:
name: MultiLabelDataset
image_root: ./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/images/
cls_label_path: ./dataset/NUS-WIDE-SCENE/NUS-SCENE-dataset/multilabel_test_list.txt
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 256
drop_last: False
shuffle: False
loader:
num_workers: 0
use_shared_memory: True
Infer:
infer_imgs: ./deploy/images/0517_2715693311.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: MultiLabelTopk
topk: 5
class_id_map_file: None
Metric:
Train:
- HammingDistance:
- AccuracyScore:
Eval:
- HammingDistance:
- AccuracyScore:
2.bug修复
PaddleClas/ppcls/data/dataloader/multilabel_dataset.py的 label_ration 的bug修复,具体如下。
from __future__ import print_function
import numpy as np
import os
import cv2
from ppcls.data.preprocess import transform
from ppcls.utils import logger
from .common_dataset import CommonDataset
class MultiLabelDataset(CommonDataset):
def _load_anno(self, label_ratio=False):
assert os.path.exists(self._cls_path)
assert os.path.exists(self._img_root)
self.images = []
self.labels = []
with open(self._cls_path) as fd:
lines = fd.readlines()
for l in lines:
l = l.strip().split("\t")
self.images.append(os.path.join(self._img_root, l[0]))
labels = l[1].split(',')
labels = [np.int64(i) for i in labels]
self.labels.append(labels)
assert os.path.exists(self.images[-1])
#label_ration, 加赋值、判断
self.label_ratio=label_ratio
if label_ratio:
return np.array(self.labels).mean(0).astype("float32")
def __getitem__(self, idx):
try:
with open(self.images[idx], 'rb') as f:
img = f.read()
if self._transform_ops:
img = transform(img, self._transform_ops)
img = img.transpose((2, 0, 1))
label = np.array(self.labels[idx]).astype("float32")
# 这边判断依旧是,因为默认False,二用None判断会出错。
# if self.label_ratio is not None:
if self.label_ratio:
return (img, np.array([label, self.label_ratio]))
else:
return (img, label)
except Exception as ex:
logger.error("Exception occured when parse line: {} with msg: {}".
format(self.images[idx], ex))
rnd_idx = np.random.randint(self.__len__())
return self.__getitem__(rnd_idx)
!cp multilabel_dataset.py PaddleClas/ppcls/data/dataloader/multilabel_dataset.py -rf
3.开始训练
%cd ~/PaddleClas/
!python3 tools/train.py \
-c ./ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml
训练日志
[2022/06/20 12:03:24] ppcls INFO: [Train][Epoch 10/10][Avg]HammingDistance: 0.05218, AccuracyScore: 0.94782, MultiLabelLoss: 0.13593, loss: 0.13593
[2022/06/20 12:03:24] ppcls INFO: [Eval][Epoch 10][Iter: 0/69]MultiLabelLoss: 0.10388, loss: 0.10388, HammingDistance: 0.03741, AccuracyScore: 0.96259, batch_cost: 0.89574s, reader_cost: 0.81882, ips: 285.79827 images/sec
[2022/06/20 12:03:32] ppcls INFO: [Eval][Epoch 10][Iter: 10/69]MultiLabelLoss: 0.13586, loss: 0.13586, HammingDistance: 0.05322, AccuracyScore: 0.94678, batch_cost: 0.79895s, reader_cost: 0.72159, ips: 320.42090 images/sec
[2022/06/20 12:03:41] ppcls INFO: [Eval][Epoch 10][Iter: 20/69]MultiLabelLoss: 0.12612, loss: 0.12612, HammingDistance: 0.05114, AccuracyScore: 0.94886, batch_cost: 0.82050s, reader_cost: 0.74314, ips: 312.00325 images/sec
[2022/06/20 12:03:48] ppcls INFO: [Eval][Epoch 10][Iter: 30/69]MultiLabelLoss: 0.13136, loss: 0.13136, HammingDistance: 0.05045, AccuracyScore: 0.94955, batch_cost: 0.80221s, reader_cost: 0.72489, ips: 319.11937 images/sec
[2022/06/20 12:03:56] ppcls INFO: [Eval][Epoch 10][Iter: 40/69]MultiLabelLoss: 0.12647, loss: 0.12647, HammingDistance: 0.05075, AccuracyScore: 0.94925, batch_cost: 0.79200s, reader_cost: 0.71474, ips: 323.23343 images/sec
[2022/06/20 12:04:04] ppcls INFO: [Eval][Epoch 10][Iter: 50/69]MultiLabelLoss: 0.11195, loss: 0.11195, HammingDistance: 0.05035, AccuracyScore: 0.94965, batch_cost: 0.78639s, reader_cost: 0.70924, ips: 325.53638 images/sec
[2022/06/20 12:04:11] ppcls INFO: [Eval][Epoch 10][Iter: 60/69]MultiLabelLoss: 0.11939, loss: 0.11939, HammingDistance: 0.05029, AccuracyScore: 0.94971, batch_cost: 0.78139s, reader_cost: 0.70429, ips: 327.62312 images/sec
[2022/06/20 12:04:17] ppcls INFO: [Eval][Epoch 10][Avg]MultiLabelLoss: 0.12980, loss: 0.12980, HammingDistance: 0.05005, AccuracyScore: 0.94995
vdl图例
五、模型评估
最终评估结果: [Eval][Epoch 0][Avg]MultiLabelLoss: 0.16364, loss: 0.16364, HammingDistance: 0.05834, AccuracyScore: 0.94166
!python3 tools/eval.py \
-c ./ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml \
-o Arch.pretrained="./output/MobileNetV1/best_model"
六、模型预测
通过预测,图像
最终预测结果: [{'class_ids': [6, 13, 23, 30], 'scores': [0.97452, 0.59816, 0.98675, 0.81546], 'file_name': './deploy/images/0517_2715693311.jpg', 'label_names': []}]
即:clouds、lake、sky、water
!python3 tools/infer.py \
-c ./ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml \
-o Arch.pretrained="./output/MobileNetV1/best_model"
七、基于预测引擎预测
1.导出 inference model
!python3 tools/export_model.py \
-c ./ppcls/configs/quick_start/professional/MobileNetV1_multilabel.yaml \
-o Arch.pretrained="./output/MobileNetV1/best_model"
inference model 的路径默认在当前路径下 ./inference
%cd ~/PaddleClas
!ls ./inference -l
/home/aistudio/PaddleClas
total 13312
-rw-r--r-- 1 aistudio aistudio 13054335 Jun 20 14:22 inference.pdiparams
-rw-r--r-- 1 aistudio aistudio 12364 Jun 20 14:22 inference.pdiparams.info
-rw-r--r-- 1 aistudio aistudio 554665 Jun 20 14:22 inference.pdmodel
2 基于预测引擎预测
- 首先进入 deploy 目录
- 通过预测引擎推理预测
预测配置文件PaddleClas/deploy/configs/inference_cls_multilabel.yaml
Global:
infer_imgs: "./images/0517_2715693311.jpg"
inference_model_dir: "../inference/"
batch_size: 1
use_gpu: True
enable_mkldnn: False
cpu_num_threads: 10
enable_benchmark: True
use_fp16: False
ir_optim: True
use_tensorrt: False
gpu_mem: 8000
enable_profile: False
PreProcess:
transform_ops:
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 0.00392157
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
channel_num: 3
- ToCHWImage:
PostProcess:
main_indicator: MultiLabelTopk
MultiLabelTopk:
topk: 5
class_id_map_file: None
SavePreLabel:
save_dir: ./pre_label/
%cd ~/PaddleClas/deploy
!python3 python/predict_cls.py \
-c ./configs/inference_cls_multilabel.yaml
/home/aistudio/PaddleClas/deploy
2022-06-20 15:07:11 INFO:
===========================================================
== PaddleClas is powered by PaddlePaddle ! ==
===========================================================
== ==
== For more info please go to the following website. ==
== ==
== https://github.com/PaddlePaddle/PaddleClas ==
===========================================================
2022-06-20 15:07:11 INFO: Global :
2022-06-20 15:07:11 INFO: batch_size : 1
2022-06-20 15:07:11 INFO: cpu_num_threads : 10
2022-06-20 15:07:11 INFO: enable_benchmark : True
2022-06-20 15:07:11 INFO: enable_mkldnn : False
2022-06-20 15:07:11 INFO: enable_profile : False
2022-06-20 15:07:11 INFO: gpu_mem : 8000
2022-06-20 15:07:11 INFO: infer_imgs : ./images/0517_2715693311.jpg
2022-06-20 15:07:11 INFO: inference_model_dir : ../inference/
2022-06-20 15:07:11 INFO: ir_optim : True
2022-06-20 15:07:11 INFO: use_fp16 : False
2022-06-20 15:07:11 INFO: use_gpu : True
2022-06-20 15:07:11 INFO: use_tensorrt : False
2022-06-20 15:07:11 INFO: PostProcess :
2022-06-20 15:07:11 INFO: MultiLabelTopk :
2022-06-20 15:07:11 INFO: class_id_map_file : None
2022-06-20 15:07:11 INFO: topk : 5
2022-06-20 15:07:11 INFO: SavePreLabel :
2022-06-20 15:07:11 INFO: save_dir : ./pre_label/
2022-06-20 15:07:11 INFO: main_indicator : MultiLabelTopk
2022-06-20 15:07:11 INFO: PreProcess :
2022-06-20 15:07:11 INFO: transform_ops :
2022-06-20 15:07:11 INFO: ResizeImage :
2022-06-20 15:07:11 INFO: resize_short : 256
2022-06-20 15:07:11 INFO: CropImage :
2022-06-20 15:07:11 INFO: size : 224
2022-06-20 15:07:11 INFO: NormalizeImage :
2022-06-20 15:07:11 INFO: channel_num : 3
2022-06-20 15:07:11 INFO: mean : [0.485, 0.456, 0.406]
2022-06-20 15:07:11 INFO: order :
2022-06-20 15:07:11 INFO: scale : 0.00392157
2022-06-20 15:07:11 INFO: std : [0.229, 0.224, 0.225]
2022-06-20 15:07:11 INFO: ToCHWImage : None
0517_2715693311.jpg: class id(s): [23], score(s): [0.62], label_name(s): []
八、总结
多标签图像分类在日常生活中很常见,例如年初的 天气以及时间分类比赛www.datafountain.cn/competition…等,飞桨提供了端到端全流程预测工具,极大缩减了训练成本呢。