2.1、基于并行上下文注意网络的场景文本图像超分辨率(代码理解与实验进度+报告)

代码链接:GitHub - Vill-Lab/2021-ACMMM-PCAN

代码有以下链接改写而成:GitHub - JasonBoy1/TextZoom: A super-resolution dataset of paired LR-HR scene text images


2. Train

Prepare training datasets

  1. Download the TextZoom dataset (1.7w+ LR-HR pair images) from the link TextZoom.
  2. Set '--dataset/lmdb/str/TextZoom' as the HR and LR image path.
  3. download the Aster model from GitHub - ayumiymk/aster.pytorch: ASTER in Pytorch,
    Moran model from GitHub - Canjie-Luo/MORAN_v2: MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition,
    CRNN model from GitHub - meijieru/crnn.pytorch: Convolutional recurrent network in pytorch.
  4. Set '--pth/crnn.pth', '--pth/demo.pth.tar', '--pth/moran.pth' as the file path of ocr metrics.

training

  1. Change your own yaml file under 'src/config/all/own.yaml'
  2. Run the following code.

CUDA_VISIBLE_DEVICES=1 python3 main.py --STN --mask --edge --config 'all/own.yaml'

猜你喜欢

转载自blog.csdn.net/weixin_43135178/article/details/126286549