看见SCINET源码,把时序数据分解成了奇数列与偶数列,好奇之下,重构一下代码~
X->(even,odd)再通过 Concat&Realign合并奇序列与偶序列。
首先所谓的even sequence和odd sequence的意思就是分别为从x序列采样从0这个位置采样0,2,...,2n;从1这个位置采样1,3,...,2n±1;
废话不多说,来看代码~,Splitting与zip_up_the_pants都是从Scinet源码里面拿出来的~,我只是简单测试了一下,方便更深入了解论文机制
测试代码如下:这是ipynb格式文件,请自行空行
import torch
from torch import nn
class Splitting(nn.Module):
def __init__(self):
super(Splitting, self).__init__()
def even(self, x):
return x[:, ::2, :]
def odd(self, x):
return x[:, 1::2, :]
def forward(self, x):
'''Returns the odd and even part'''
return (self.even(x), self.odd(x))
def zip_up_the_pants(even, odd):
even = even.permute(1, 0, 2)
odd = odd.permute(1, 0, 2) #L, B, D
even_len = even.shape[0]
odd_len = odd.shape[0]
mlen = min((odd_len, even_len))
_ = []
for i in range(mlen):
_.append(even[i].unsqueeze(0))
_.append(odd[i].unsqueeze(0))
if odd_len < even_len:
_.append(even[-1].unsqueeze(0))
return torch.cat(_,0).permute(1,0,2) #B, L, D
x = torch.randn(8,107,7)
x.shape
split = Splitting()
even,odd = split(x)
print(even.shape)
print(odd.shape)
x_reconstruction = zip_up_the_pants(even,odd)
x_reconstruction.shape