Leetcode139.单词拆分
题目链接:Leetcode139.单词拆分
这道题非常不错,回顾了动归五部曲、物品和背包遍历顺序的先后,以及substr、unordered_set中find的使用
注意:break只往外出一层。
二刷提醒
class Solution {
public:
bool wordBreak(string s, vector<string>& wordDict) {
unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
vector<bool> dp(s.size() + 1, false);
dp[0] = true;
for (int i = 1; i <= s.size(); i++) {
// 遍历背包
for (int j = 0; j < i; j++) {
// 遍历物品
string word = s.substr(j, i - j); //substr(起始位置,截取的个数)
if (wordSet.find(word) != wordSet.end() && dp[j]) {
dp[i] = true;
break;
}
}
}
return dp[s.size()];
}
};
多重背包
多重背包是介于01背包和完全背包之间的一种,01背包每种只有一个,多重背包每种有特定个,完全背包每种有无限个。
基于此特点,提供了一种解决多重背包的思路,就是把它展开变成01背包,即把n个x,m个y展开成{x,x,x,x,…,y,y,y,y,y…},那么问题就变回了01背包。
由于其这么2b的特点,面试官一般不会出这种sb题目。了解即可
背包问题总结篇
背包问题是动归中非常重要的一部分,依旧是通过动归五部曲来做:
- 确定dp数组类型以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
其中最与众不同的两步,是递推公式,和遍历顺序,需要总结一下。
递推公式
- 是否能装满背包、最多能装多少个/多少钱:
dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]);
- 装满背包最少要用多少个:
dp[j] = min(dp[j], dp[j - nums[i]] + nums[i]);
- 装满背包有几种方法:
dp[j] += dp[j - nums[i]]
遍历顺序
01背包:先物品再背包,背包倒序
完全背包:全都正序,1. 普通的先后无所谓、2. 求组合数,先物品后背包、3. 求排列数,先背包后物品
补充
这个初始化的时候,往往很抽象啊,dp[0]的值有时候0有时候1,还得推一下看看怎么才能满足后续递推过程,是1的时候比较多,是0的时候往往题目会说。(welcome to ChengDu