归并排序有多简单?一幅图教你看懂【C语言】

目录

归并排序的递归实现 

代码实现

归并排序的非递归实现 

代码实现


归并排序的思想很简单——分治法。简单地说,归并排序的是将序列拆分成几段子序列,将每一段子序列分别进行排序,排好之后再将有序的子序列归并(有点像合并两个有序数组)成为一个有序的序列。

例如要排序数列:10、6、7、1、3、9、4、2;

将序列拆分为 2 个子序列;

继续拆分;

 

 继续拆分;

至此,每个子序列的长度都为 1 ,因为只有一个数,所以可认为是有序序列;

现将子序列两两归并,即合并两个有序序列;

继续归并;

继续归并; 

以上就是归并排序的整个过程,很显然归并排序的实现应该离不开递归的思想。

归并排序的递归实现 

归并排序的递归实现较为简单,需要注意的有两点:

1. 归并的过程并非在原数组上直接改动,而是开辟一个临时数组,在临时数组上进行排序,排好之后将临时数组的内容全部拷贝到原数组;

2. 代码中使用的是二路归并(如上图所示,每次将序列拆分为两个子序列)。

代码实现

void _MergeSort(int* a, int begin, int end, int* tmp)
{
	//递归的结束条件//当序列只有一个元素时或序列不存在时
	if (begin >= end)
		return;

	//将序列进行拆分 //[begin,mid]  [mid+1,end]
	int mid = (begin + end) / 2;

	//拆分的过程
	_MergeSort(a, begin, mid, tmp);
	_MergeSort(a, mid+1, end, tmp);
	
	//以下为归并的过程
	int begin1 = begin, end1 = mid;
	int begin2 = mid+1, end2 = end;
	int i = begin;
	//归并:合并两个有序序列
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (a[begin1] <= a[begin2])
		{
			tmp[i++] = a[begin1++];
		}
		else
		{
			tmp[i++] = a[begin2++];
		}
	}
	//如果第二段序列先结束
	while (begin1 <= end1)
	{
		tmp[i++] = a[begin1++];
	}
	//如果第一段序列先结束
	while (begin2 <= end2)
	{
		tmp[i++] = a[begin2++];
	}
	//将临时数组的数据拷贝回原数组
	memcpy(a + begin, tmp + begin, sizeof(int) * (end - begin + 1));
}

void MergeSort(int* a,int n)
{
	//开辟一个临时数组
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}

	_MergeSort(a, 0, n - 1, tmp);

	//释放与置空
	free(tmp);
	tmp = NULL;
}

归并排序的非递归实现 

非递归与递归作用思想基本相同。递归实现时,因为拆分序列时采用的是递归的方式,所以通过传递参数就可以控制子序列的长度。但是非递归不行,非递归通过变量 rangeN 来控制序列的长度(或间隔),每次让 rangeN *= 2 例如:

但是由于 rangeN 每次都 *2 ,而我们排序的序列长度不可能总是 2 的倍数,所以 可能会有数组越界访问的风险。例如:

现将两个子序列归并,并将数据拷贝回原数组时,就会发生越界:

当然这只是其中一种越界的可能情况——第二段序列发生越界,原因是右边界 end2 大于 n;

实际操作中,一共会有三种情况导致越界:

两段序列的区间分别为: [begin1,end1]  [begin2,end2]

1. end1 > n;

2. begin > n;

3.end2 > n;

所以,当这三种情况发生时,需要修正区间,以上述用例为例, end2 大于 n 时,令 end2 = n-1即可;

代码实现

void MergeSortNonR(int* a, int n)
{
	//开辟一个临时数组
	int* tmp = (int*)malloc(sizeof(int) * n);
	if (tmp == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}

	int rangeN = 1;

	while (rangeN < n)
	{
        // i 控制访问子序列的位置
		for (int i = 0; i < n; i += 2 * rangeN)
		{
			//拆分为两段子序列//[begin1,end1] [begin2,end2]
			int begin1 = i, end1 = i + rangeN - 1;
			int begin2 = i + rangeN, end2 = i + 2 * rangeN - 1;

			int j = i;
            
            //判断是否发生越界的三种情况,如果有,就修正区间
			if (end1 >= n)
			{
				end1 = n - 1;
				//将第二段序列改为不存在的序列即可
				begin2 = n;
				end2 = n - 1;
			}
			else if (begin2 >= n)
			{
				//将第二段序列改为不存在的序列即可
				begin2 = n;
				end2 = n - 1;
			}
			else if (end2 >= n)
			{
                //修正区间
				end2 = n-1;
			}

			while (begin1 <= end1 && begin2 <= end2)
			{
				if (a[begin1] <= a[begin2])
				{
					tmp[j++] = a[begin1++];
				}
				else
				{
					tmp[j++] = a[begin2++];
				}
			}

			//如果第二段序列先结束
			while (begin1 <= end1)
			{
				tmp[j++] = a[begin1++];
			}
			//如果第一段序列先结束
			while (begin2 <= end2)
			{
				tmp[j++] = a[begin2++];
			}
		}
		//将临时数组的内容拷贝回原数组
		memcpy(a, tmp, sizeof(int) * n);

		//控制间隔
		rangeN *= 2;
	}

	//释放与置空
	free(tmp);
	tmp = NULL;
}

猜你喜欢

转载自blog.csdn.net/gllll_yu/article/details/129493155
今日推荐