【bzoj3512】DZY Loves Math IV 【杜教筛】

题目链接
题意: i = 1 n j = 1 m φ ( i j ) 1000000007 的值。 n <= 100005 , m <= 100005
题解:首先我们有一个结论。
| μ ( n ) | = 1 ,则 φ ( n m ) = k | g c d ( n , m ) φ ( n k ) φ ( m )
怎么证?
k | g c d ( n , m ) φ ( n k ) φ ( m )
= φ ( m ) k | g c d ( n , m ) φ ( n k )
= φ ( m ) k | g c d ( n , m ) φ ( n ) φ ( k )
= φ ( n ) φ ( m ) k | g c d ( n , m ) 1 φ ( k )
= φ ( n ) φ ( m ) k | g c d ( n , m ) φ ( g c d ( n , m ) ) φ ( k ) φ ( g c d ( n , m ) )
= φ ( n ) φ ( m ) 1 φ ( g c d ( n , m ) ) k | g c d ( n , m ) φ ( g c d ( n , m ) ) φ ( k )
= φ ( n ) φ ( m ) 1 φ ( g c d ( n , m ) ) k | g c d ( n , m ) φ ( g c d ( n , m ) k )
= φ ( n ) φ ( m ) 1 φ ( g c d ( n , m ) ) k | g c d ( n , m ) φ ( g c d ( n , m ) k )
= φ ( n ) φ ( m ) g c d ( n , m ) φ ( g c d ( n , m ) ) 这是因为 d | n φ ( d ) = n
= φ ( n g c d ( n , m ) ) φ ( m ) g c d ( n , m )
推导过程中用到了很多 | μ ( n ) | = 1 的性质。
这个式子就很显然了,因为根据 | μ ( n ) | = 1 n g c d ( n , m ) m 互质,于是 φ ( n g c d ( n , m ) ) φ ( m ) g c d ( n , m ) = φ ( n m ) ,想一想就知道了。于是就证完了!
| μ ( n ) | = 0 ,设k为最小的正整数满足 k | n μ ( k ) = 1
φ ( n m ) = φ ( k m ) n k
接下来我们继续推导。
我们令 S ( n , m ) = i = 1 m φ ( n i )
a n s = i = 1 n S ( i , m )
对于 S ( n , m ) ,若 | μ ( n ) | = 1 n 1 ,则
S ( n , m )
= i = 1 m φ ( n i )
= i = 1 m d | g c d ( n , i ) φ ( n d ) φ ( i )
= d | n φ ( n d ) i = 1 m d φ ( i )
= d | n φ ( n d ) S ( d , m d )
否则若 | μ ( n ) | = 0 n 1
设k为最小的正整数满足 k | n μ ( k ) = 1 ,则
S ( n , m ) = S ( k , m ) n k
否则当 n = 1
S ( n , m ) = i = 1 m φ ( i )
跟求 μ 的前缀和类似, i = 1 n j | i φ ( j ) = n ( n + 1 ) 2 ,因为 j | i φ ( j ) = i
=> j = 1 n i = 1 n j φ ( j ) = n ( n + 1 ) 2
=> i = 1 n j = 1 n i φ ( j ) = n ( n + 1 ) 2
=> j = 1 n φ ( j ) = n ( n + 1 ) 2 i = 2 n j = 1 n i φ ( j ) ,即把 i = 1 带入。
=> S ( n , m ) = m ( m + 1 ) 2 i = 2 m S ( n , m i )
于是我们只需要开个map无脑记搜乱搞即可。时间复杂度不会算= =
丑得不堪入目的 代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<map>
using namespace std;
typedef long long ll;
const int N=1000005;
const ll mod=1000000007;
int n,m,p[N];
bool vis[N];
ll ans,mu[N],phi[N],sum[N];
map<int,map<int,ll> >mp;
ll solve(int n,int m){
    if(m<=1){
        return phi[n*m];
    }else if(n==1){
        if(m<=1000000){
            return sum[m];
        }
        if(mp[n][m]){
            return mp[n][m];
        }
        ll res=1LL*m*(m+1)/2;
        for(int i=2,last;i<=m;i=last+1){
            last=m/(m/i);
            res-=solve(n,m/i)*(last-i+1)%mod;
            res%=mod;
        }
        return mp[n][m]=res;
    }else{
        if(mp[n][m]){
            return mp[n][m];
        }
        int tmp=0;
        for(int i=1;i*i<=n;i++){
            if(n%i==0&&mu[n/i]){
                tmp=i;
            break;
            }
        }
        if(!tmp){
            for(int i=sqrt(n);i>=1;i--){
                if(n%i==0&&mu[i]){
                    tmp=n/i;
                    break;
                }
            }
        }
        n/=tmp;
        ll res=0;
        for(int i=1;i*i<=n;i++){
            if(n%i==0){
                res+=phi[n/i]*solve(i,m/i)%mod;
                res%=mod;
                if(i*i!=n){
                    res+=phi[i]*(solve(n/i,m/(n/i)))%mod;
                    res%=mod;
                }
            }
        }
        n*=tmp;
        res=res*tmp%mod;
        return mp[n][m]=res;
    }
}
int main(){
    mu[1]=phi[1]=1;
    for(int i=2;i<=1000000;i++){
        if(!vis[i]){
            p[++p[0]]=i;
            mu[i]=-1;
            phi[i]=i-1;
        }
        for(int j=1;j<=p[0]&&i*p[j]<=1000000;j++){
            vis[i*p[j]]=true;
            if(i%p[j]){
                mu[i*p[j]]=-mu[i];
                phi[i*p[j]]=phi[i]*(p[j]-1);
            }else{
                phi[i*p[j]]=phi[i]*p[j];
                break;
            }
        }
    }
    for(int i=1;i<=1000000;i++){
        sum[i]=sum[i-1]+phi[i];
        sum[i]%=mod;
    }
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++){
        ans+=solve(i,m);
        ans%=mod;
    }
    printf("%lld\n",(ans+mod)%mod);
    return 0;
}

猜你喜欢

转载自blog.csdn.net/ez_2016gdgzoi471/article/details/80584379
今日推荐