输电线路的继电保护整定计算及装置

摘要

由于国内人民生活水平的提高,科技不断地进步,控制不断地完善,从而促使输电线路继电保护技术在电气系统领域占据主导权,也使得输电线路继电保护系统被广泛应用。在电力系统设计领域中,输电线路继电保护系统成为目前一处亮丽的风景线,因为其设计资源众多,开发经验丰富,最重要的是成本较低,控制在用户可承受的范围内,因此输电线路继电保护系统设计逐渐成为世界各国关注的重点。随着输电线路继电保护系统领域的不断革新,数量越来越大,逐渐成为研究的重点方向,因此新一代的我们要认真去钻研输电线路继电保护系统的构成。

本文采用新的思路研究零序互感对110kV输电线路继电保护整定的影响,通过定性分析零序互感对继电保护整定存在影响的结线方式,定量计算零序互感给继电保护整定值带来的误差,比较该误差与当前继电保护整定原则的关系,如果该误差在当前继电保护整原则允许的范围内,则当前实际应用的继电保护整定原则还可以沿用,否则存在整定风险,需要采取线路参数实测值、调整灵敏系数、调整可靠系数等控制措施。这对防范保护不正确动作,减少现场继电保护整定、线路参数实测工作量等具有工程现实意义。

关键词:输电线路继电保护系统;单片机;IGBT

 

Abstract

Due to the improvement of domestic people's living standard, the continuous progress of science and technology, and the continuous improvement of control, thus promoting the transmission line reactive power compensation technology to occupy the dominant position in the field of electrical system, but also make the transmission line reactive power compensation system is widely used.In the field of the electrical system design, transmission line reactive power compensation system is now a beautiful scenery line, because of its large number of design resources, rich development experience, the most important thing is that the cost is low, the control within the scope of the users will be able to afford, so the transmission line reactive power compensation system design gradually become the focus of world attention.With the continuous innovation in the field of transmission line reactive power compensation system, the number is getting larger and larger, and it has gradually become the focus of research. Therefore, the new generation of us should seriously study the composition of transmission line reactive power compensation system.

Reactive power compensation for transmission lines has always been a hot research topic. Based on the characteristics of the system, this paper completes the hardware design of dynamic reactive power compensation control system.Hardware circuit mainly includes MCU minimum system, communication circuit, digital input/output circuit and IGBT drive circuit.The design of the hardware circuit needs to allocate the MCU pin according to the actual demand;Select the appropriate communication standard and communication protocol, and have the corresponding chip for signal conditioning;The designed IGBT drive circuit has the function of overcurrent protection, and the appropriate chip is selected to meet the IGBT drive power and switching frequency.

The simulation test and experimental study are completed.A simulation platform was built to simulate the communication function between the upper computer and the SCM of the dynamic reactive power compensation control system.At the same time, the reactive power compensation effect of the control system is simulated by MATLAB simulation tool.

Key words:Transmission line reactive power compensation system;Single chip microcomputer;IGBT

目录

摘要............................................................................................................................ 2

第一章 绪论............................................................................................................. 1

1.1 概述............................................................................................................ 1

1.2 国内外发展现状....................................................................................... 2

1.3 课题的研究内容及章节安排.................................................................. 4

第二章 软件结构与功能........................................................................................ 5

2.1 软件的总体结构....................................................................................... 5

2.2 软件的主要功能和特点........................................................................... 7

2.3 软件的开发、运行环境........................................................................... 8

2.3.1  软件的开发环境........................................................................ 8

2.3.2  软件的运行环境........................................................................ 9

第三章 故障分析................................................................................................... 11

3.1 简单故障计算......................................................................................... 11

3.2 查找故障点............................................................................................. 12

第四章 继电保护配置及整定............................................................................. 14

4.1 继电保护整定计算原则........................................................................ 14

4.2 接地零序电流保护整定原则及计算................................................... 14

第五章  输电线路雷击故障行波特性分析...................................................... 18

5.1  行波基础理论...................................................................................... 18

5.1.1  行波定义.................................................................................. 18

5.1.2  线路中的波过程..................................................................... 18

5.2  雷击故障行波的产生原理................................................................. 19

5.3  本章小结.............................................................................................. 20

第六章  进线端防雷保护设计........................................................................... 22

6.2  电缆进线的过电压保护..................................................................... 22

6.3  本章小结.............................................................................................. 23

第七章  输电线路继电保护控制系统建模仿真.............................................. 24

7.1 输电线路继电保护控制系统建模........................................................ 24

7.2 仿真分析.................................................................................................. 24

第八章  结束语..................................................................................................... 26

参考文献................................................................................................................. 27

致    谢................................................................................................................. 31

第一章 绪论

1.1 概述

输电线路担负着传输电能的重任,分布范围广泛、穿越地形复杂,在电网构成中所占比例最大,同时也是电网中发生故障最多的元件,纵观国内外的大停电事故,大多数都是由线路故障引起的[2]。输电线路能否正常运行直接关系到整个电力系统的安全和稳定,伴随着现代电力系统规模的不断壮大,高压远距离输电线路日益增多,电网之间的互联也在逐渐加强,输电线路发生故障的概率将会随么加大。输电线路继电保护的研究具有重要的经济价值和现实意义。

常见的输电线路继电保护系统在对电能的接受和发送,降压和升压转换,电流的方向等方面进行控制,高压和低压电网的连接也是通过变压器来转换的。输电线路继电保护系统的设计规划在电力系统的整体设备中是至关重要的,要实现电网的稳定运行和供电,不影响用户和发电厂之间电量转换的关系。

日常中的输电线路继电保护系统主要用途在于转换电压,将发电厂输出的高压电进行降压处理,转换成用户可以直接使用的220V低压电,发电厂端的输电线路继电保护系统主要是用来将发电厂输出的电进行升压转换,其一是为了方便进行远程传输,除此之外能够有效地降低传输线上的电阻等产生的消耗;另外一种使我们经常见的降压变压器,主要是将电缆中的高压线通过降压处理传输给用户使用,达到220V电压。针对不同的状况,变压器进行升压和降压的程度完全不同,因此输电线路继电保护系统的种类多种多样,例如在进行远距离传输时,电压将会升至千伏以上,甚至达到更高;当为近距离传输时,电压会升至一千伏左右,经过降压变压器转换后,将高压电转换成220V用户电。

........

需要完整本私信

猜你喜欢

转载自blog.csdn.net/weixin_45905610/article/details/130851527