Android Koom 处理 app 的OOM 一些系列问题(java /native/thread leak)

本篇文档是基于快手团队的Koom 2.2.0 的tag 版本的使用介绍。

前期工作

    VERSION_NAME=2.2.0
    // 引入koom 的静态库,这里版本2.2.0
    implementation "com.kuaishou.koom:koom-native-leak-static:${VERSION_NAME}"
    implementation "com.kuaishou.koom:koom-java-leak-static:${VERSION_NAME}"
    implementation "com.kuaishou.koom:koom-thread-leak-static:${VERSION_NAME}"
    implementation "com.kuaishou.koom:xhook-static:${VERSION_NAME}"

使用快手发布koom 的静态库,通过源码编译,可能遇到一些问题,编译不通过。
更多信息,请阅读快手 KOOM 详细文档

1.JavaLeak

1.1 koom输出java 泄漏的json 信息

该json中包含:

  • runningInfo: app 当前进程信息,包含线程数、fd 数据等关键信息

  • gcPaths: 触发gc的对象的调用链

  • leakObjects:泄漏对象

  • classInfos:类信息

先来看下,leakObjects:

[
{
    
    
"className":"android.graphics.Bitmap",
"extDetail":"1920 x 1080",
"objectId":"327801464",
"size":"2073600"
},
{
    
    
"className":"int[]",
"objectId":"1972002816",
"size":"455869"
},
{
    
    
"className":"byte[]",
"objectId":"1973350400",
"size":"524301"
},
{
    
    
"className":"char[]",
"objectId":"1974407184",
"size":"1048589"
}
]

从上面看,可知有bimap 和数组存在泄漏,但无更详细信息。

接下来看下gcPaths中一部分信息:

{
    
    
"gcRoot":"Local variable in native code",
"instanceCount":1,
"leakReason":"Bitmap Size Over Threshold, 1920x1080",
"path":[
{
    
    
"declaredClass":"java.lang.ClassLoader",
"reference":"dalvik.system.PathClassLoader.runtimeInternalObjects",
"referenceType":"INSTANCE_FIELD"
},
{
    
    
"declaredClass":"java.lang.Object[]",
"reference":"java.lang.Object[]",
"referenceType":"ARRAY_ENTRY"
},
{
    
    
"declaredClass":"com.kwai.koom.demo.javaleak.test.LeakMaker",
"reference":"com.kwai.koom.demo.javaleak.test.LeakMaker.leakMakerList",
"referenceType":"STATIC_FIELD"
},
{
    
    
"declaredClass":"java.util.ArrayList",
"reference":"java.util.ArrayList.elementData",
"referenceType":"INSTANCE_FIELD"
},
{
    
    
"declaredClass":"java.lang.Object[]",
"reference":"java.lang.Object[]",
"referenceType":"ARRAY_ENTRY"
},
{
    
    
"declaredClass":"com.kwai.koom.demo.javaleak.test.LeakMaker",
"reference":"com.kwai.koom.demo.javaleak.test.BitmapLeakMaker.uselessObjectList",
"referenceType":"INSTANCE_FIELD"
},
{
    
    
"declaredClass":"java.util.ArrayList",
"reference":"java.util.ArrayList.elementData",
"referenceType":"INSTANCE_FIELD"
},
{
    
    
"declaredClass":"java.lang.Object[]",
"reference":"java.lang.Object[]",
"referenceType":"ARRAY_ENTRY"
},
{
    
    
"reference":"android.graphics.Bitmap",
"referenceType":"instance"
}
],
"signature":"38ba5ba71b7599737372f965417abcf2765dbb2a"
}

从gc 调用链看出,bitmap 被LeakMaker持有,LeakMaker 被BitmapLeakMaker持有,BitmapLeakMaker被LeakMaker 中静态leakMakerList持有,导致bitmap 一直无法被释放。

接下来看下runningInfo 的部分信息:

{
    
    
"buildModel":"PCLM50",
"currentPage":"javaleak.JavaLeakTestActivity",
"deviceMemAvaliable":"3643.6367",
"deviceMemTotal":"7398.6797",
"dumpReason":"reason_thread_oom",
"fdCount":"138",
"filterInstanceTime":"1.837",
"findGCPathTime":"16.967",
"jvmMax":"384.0",
"jvmUsed":"6.4137344",
"manufacture":"OPPO",
"nowTime":"2022-08-17_15-29-50_432",
"pss":"125.66699mb",
"rss":"161.82812mb",
"sdkInt":"31",
"threadCount":"725"
}

从上面信息,可知 线程是725个,fd 是138个,当前页面是JavaLeakTestActivity等关键信息。

1.2 studio 解析hprof 文件

接下来,通过studio 解析下koom 生成的泄漏hprof 文件(sdcard/android/data/包名/files/performance/oom/memory/hrof-aly 目录下)。

先查看下UI(framgent/activity)泄漏:
在这里插入图片描述

接下来看下,json 文件中bitmap 泄漏的情况:

在这里插入图片描述

更多hprof 文件解读,自行百度。

2.NativeLeak:

2.1查看logcat 中输出的native 泄漏的日志

2022-08-09 11:21:21.987 15584-15696/com.kwai.koom.demo I/NativeLeakTestActivity: Activity: com.kwai.koom.demo.nativeleak.NativeLeakTestActivity@36fb614
   //.......
    LeakSize: 24 Byte
    LeakThread: .kwai.koom.demo
    Backtrace:
    #0 pc 0x1d9c  libnative-leak-test.so
    #1 pc 0x190c  libnative-leak-test.so
    #2 pc 0xda278  libc.so
    #3 pc 0x7a448  libc.so
    

2.2 借用android ndk 工具(ndk-stack或者addr21line )来定位代码位置。

执行addr2line的相关命令:
在这里插入图片描述
从上面可以看出native-leak-test.cpp 文件中93行:

static NOINLINE void TestContainerLeak() {
  std::vector<std::string *> str_vector(NR_TEST_CASE);
  for (int i = 0; i < NR_TEST_CASE; i++) {
    str_vector[i] = new std::string("test_leak_container");
  }
}

c++ 与java 是很大不同,没有gc 垃圾回收机制,在c++ 中 听new 开辟的内存,必须手动delete 删除。从上面代码可见,通过new 创建了string 指针后,执行完TestContainerLeak()后并没有delete删除 该内存,因此造成native 泄漏。

3.ThreadLeakMonitor使用

3.1了解下Koom中线程泄漏的案例

先来解读下Koom中线程泄漏案例的代码:

static NOINLINE void TestThreadLeak(int64_t delay) {
  //这里使用的是c++ thread,使用lamba表达式方式来创建线程,在c++ 函数也是指针。
  std::thread test_thread([](int64_t delay) {
    //设置线程名称为test_thread
    pthread_setname_np(pthread_self(), "test_thread");
    LOGI("test_thread run");
    // 声明线程指针
    std::thread *test_thread_1;
    std::thread *test_thread_2;
    test_thread_1 = new std::thread([]() {
      pthread_setname_np(pthread_self(), "test_thread_1");
      LOGI("test_thread_1 run");
    });
    test_thread_2 = new std::thread([]() {
      pthread_setname_np(pthread_self(), "test_thread_2");
      LOGI("test_thread_2 run");
    });
    // 沉睡delay 秒时间,再调用 上面线程的detach()和join()
    std::this_thread::sleep_for(std::chrono::milliseconds(delay));
    test_thread_1->detach();
    LOGI("test_thread_1 detach");
    test_thread_2->join();
    LOGI("test_thread_2 join");
  }, delay);
  test_thread.detach();
}

简单来说,创建一个名为test_thread的线程,在其内部开启两个线程test_thread1和test_thread2 ,沉睡指定时间后,再调用它两的detach()和join()。

接下来,看下实际的效果:

3.2 查看线程泄漏的日志

当点击测试案例,线程test_thread 开启线程test_thread2和test_thread_1, 沉睡10秒后再调用它两的join()或者detach()。
先是在logcat中输出一下日志:

2022-08-09 09:57:13.334 13961-26723/com.kwai.koom.demo I/ThreadLeakTest: test_thread run
2022-08-09 09:57:13.335 13961-26726/com.kwai.koom.demo I/ThreadLeakTest: test_thread_2 run
2022-08-09 09:57:13.335 13961-26724/com.kwai.koom.demo I/ThreadLeakTest: test_thread_1 run

监控thread 没有执行join()或者detach()方法下,执行了pthread_exit,则记录下泄露线程信息。
2022-08-09 09:57:13到2022-08-09 09:57:18的间隔时间是5秒,刚好是enableThreadLeakCheck(2 * 1000L, 5 * 1000L)中的泄漏时间,超过这个时间,就会上报线程泄漏信息。更多详细日志如下所示:

2022-08-09 09:57:18.538 13961-14017/com.kwai.koom.demo I/ThreadLeakTest: tid: 26726
    createTime: 284943128292812 Byte
    startTime: 284943128354687
    endTime: 284943128382916
    name: test_thread_2
    createCallStack:
      #00 pc 0000000000002084  /data/app/~~UA5bVzbMO-QDKhKIgEGpxg==/com.kwai.koom.demo-Fnd4kAPgIstzWnyszO4chg==/lib/arm64/libnative-leak-test.so (BuildId: b3e2c22d2f281ecd24ed2bdd07577439)
      #01 pc 00000000000da278  /apex/com.android.runtime/lib64/bionic/libc.so (__pthread_start(void*)+64) (BuildId: 1ca28d785d6567d2b225cf978ef04de5)
      #02 pc 000000000007a448  /apex/com.android.runtime/lib64/bionic/libc.so (__start_thread+64) (BuildId: 1ca28d785d6567d2b225cf978ef04de5)
2022-08-09 09:57:18.538 13961-14017/com.kwai.koom.demo I/ThreadLeakTest: tid: 26724
    createTime: 284943128217864 Byte
    startTime: 284943128528853
    endTime: 284943128671353
    name: test_thread_1
    createCallStack:
      #00 pc 000000000000203c  /data/app/~~UA5bVzbMO-QDKhKIgEGpxg==/com.kwai.koom.demo-Fnd4kAPgIstzWnyszO4chg==/lib/arm64/libnative-leak-test.so (BuildId: b3e2c22d2f281ecd24ed2bdd07577439)
      #01 pc 00000000000da278  /apex/com.android.runtime/lib64/bionic/libc.so (__pthread_start(void*)+64) (BuildId: 1ca28d785d6567d2b225cf978ef04de5)
      #02 pc 000000000007a448  /apex/com.android.runtime/lib64/bionic/libc.so (__start_thread+64) (BuildId: 1ca28d785d6567d2b225cf978ef04de5)

当然Koom 的线程监控并不影响自身线程的逻辑,2022-08-09 09:57:13到2022-08-09 09:57:23,期间刚好沉睡10秒后,会再调用它两的join()或者detach(),以下日志也刚好验证。

2022-08-09 09:57:23.335 13961-26723/com.kwai.koom.demo I/ThreadLeakTest: test_thread_1 detach
2022-08-09 09:57:23.335 13961-26723/com.kwai.koom.demo I/ThreadLeakTest: test_thread_2 join。

猜你喜欢

转载自blog.csdn.net/hexingen/article/details/126388563