HCIP-IERS部署企业级路由交换网络_OSPF协议特性与配置_OSPF单区域

目录

第一章 OSPF协议特性与配置

实验 1-1 OSPF单区域

学习目的

拓扑图

场景

学习任务

步骤一.基础配置与IP编址

步骤二.配置单区域的OSPF

步骤三.观察路由器在以太网上邻接关系的建立过程

步骤四.配置OSPF中Loopback接口的网络类型

步骤五.修改接口的OSPF代价值

步骤六.配置OSPF的Silent-interface

附加实验: 思考并验证

最终设备配置


第一章 OSPF协议特性与配置

实验 1-1 OSPF单区域

学习目的

·掌握单区域OSPF的配置方法

·掌握OSPF区域认证的配置方法

·了解OSPF在多路访问网络邻居关系建立的过程

·理解OSPF对Loopback接口所连接网络的掩码发布的形式

·掌握对OSPF接口代价值进行修改的方法

·掌握OSPF中Silent-interface的配置方法

·掌握使用Display查看OSPF各种状态的方法

·掌握使用Debug命令查看OSPF邻接关系和进行故障排除的方法

拓扑图

图1-1 OSPF单区域

场景

你是公司的网络管理员。现在公司的网络中有三台ARG3路由器,通过以太网实现相互的连通。在以太网这样的广播式多路访问网络上,可能存在安全隐患,所有你选择采用OSPF区域认证的方法来避免恶意的路由攻击。在部署网络的过程中,出现了网络连通性的问题,你通过使用displaydebug命令进行了故障排除。

学习任务

步骤一.基础配置与IP编址

给R1、R2和R3配置IP地址和掩码。配置时Loopback接口配置掩码为24位,模拟成一个单独的网段。配置完成后,测试直连链路的连通性。

<R1>system-view

Enter system view, return user view with Ctrl+Z.

[R1]interface GigabitEthernet 0/0/0

[R1-GigabitEthernet0/0/0]ip address 10.0.123.1 24

[R1-GigabitEthernet0/0/0]quit

[R1]interface LoopBack 0

[R1-LoopBack0]ip address 10.0.1.1 24

[R1-LoopBack0]quit

<R2>system-view

Enter system view, return user view with Ctrl+Z.

[R2]interface GigabitEthernet 0/0/0

[R2-GigabitEthernet0/0/0]ip address 10.0.123.2 24

[R2-GigabitEthernet0/0/0]quit

[R2]interface LoopBack 0

[R2-LoopBack0]ip address 10.0.2.2 24

[R2-LoopBack0]quit

<R3>system-view

Enter system view, return user view with Ctrl+Z.

[R3]interface GigabitEthernet 0/0/0

[R3-GigabitEthernet0/0/0]ip address 10.0.123.3 24

[R3-GigabitEthernet0/0/0]quit

[R3]interface LoopBack 0

[R3-LoopBack0]ip address 10.0.3.3 24

[R3-LoopBack0]quit

配置完各接口地址之后验证路由器之间的连通性。

[R1]ping -c 1 10.0.123.2

  PING 10.0.123.2: 56  data bytes, press CTRL_C to break

    Reply from 10.0.123.2: bytes=56 Sequence=1 ttl=255 time=2 ms

  --- 10.0.123.2 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 2/2/2 ms

[R1]ping -c 1 10.0.123.3

  PING 10.0.123.3: 56  data bytes, press CTRL_C to break

    Reply from 10.0.123.3: bytes=56 Sequence=1 ttl=255 time=2 ms

  --- 10.0.123.3 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

round-trip min/avg/max = 2/2/2 ms

[R2]ping -c 1 10.0.123.3

  PING 10.0.123.3: 56  data bytes, press CTRL_C to break

    Reply from 10.0.123.3: bytes=56 Sequence=1 ttl=255 time=2 ms

  --- 10.0.123.3 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 2/2/2 ms

步骤二.配置单区域的OSPF

配置单区域OSPF。所有路由器属于区域0,配置使用OSPF进程1。同时配置区域认证,使用密码“huawei“。在区域中,华为的设备支持使用明文或MD5值进行认证,在这里,我们仅使用明文进行认证。

注意在使用network命令时,通配符掩码使用0.0.0.0。为了保证路由器的Router ID稳定,我们在启动OSPF进程时使用router-id参数静态指定路由器的Router ID。

[R1]ospf 1 router-id 10.0.1.1

[R1-ospf-1]area 0

[R1-ospf-1-area-0.0.0.0]network 10.0.123.1 0.0.0.0

[R1-ospf-1-area-0.0.0.0]network 10.0.1.1 0.0.0.0

[R1-ospf-1-area-0.0.0.0]authentication-mode simple plain huawei

[R1-ospf-1-area-0.0.0.0]quit

[R1-ospf-1]quit

[R2]ospf 1 router-id 10.0.2.2

[R2-ospf-1]area 0

[R2-ospf-1-area-0.0.0.0]network 10.0.123.2 0.0.0.0

[R2-ospf-1-area-0.0.0.0]network 10.0.2.2 0.0.0.0

[R2-ospf-1-area-0.0.0.0]authentication-mode simple plain huawei

[R2-ospf-1-area-0.0.0.0]quit

[R2-ospf-1]quit

[R3]ospf 1 router-id 10.0.3.3

[R3-ospf-1]area 0

[R3-ospf-1-area-0.0.0.0]network 10.0.123.3 0.0.0.0

[R3-ospf-1-area-0.0.0.0]network 10.0.3.3 0.0.0.0

[R3-ospf-1-area-0.0.0.0]authentication-mode simple plain huawei

[R3-ospf-1-area-0.0.0.0]quit

[R3-ospf-1]quit

配置完成后,查看设备的路由表,并测试全网的连通性。我们首先在R1上查看路由表。

 [R1]display ip routing-table

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Routing Tables: Public

         Destinations : 12       Routes : 12       

Destination/Mask    Proto  Pre Cost    Flags NextHop         Interface

       10.0.1.0/24 Direct  0    0      D   10.0.1.1        LoopBack0

       10.0.1.1/32 Direct  0    0      D   127.0.0.1       LoopBack0

     10.0.1.255/32 Direct  0    0      D   127.0.0.1       LoopBack0

       10.0.2.2/32 OSPF  10   1       D   10.0.123.2     GigabitEthernet0/0/0

       10.0.3.3/32 OSPF  10   1       D   10.0.123.3     GigabitEthernet0/0/0

     10.0.123.0/24 Direct  0    0      D   10.0.123.1     GigabitEthernet0/0/0

     10.0.123.1/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

   10.0.123.255/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

      127.0.0.0/8 Direct  0    0       D   127.0.0.1       InLoopBack0

      127.0.0.1/32 Direct  0    0      D   127.0.0.1       InLoopBack0

127.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

255.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

从输出中我们可以看到R1从OSPF学习到了2条路由,10.0.2.2/32和10.0.3.3/32,下一跳分别是10.0.123.2和10.0.123.3。然后分别检查从R1到达R2及R3的Loopback地址的连通性。

[R1]ping -c 1 10.0.2.2

  PING 10.0.2.2: 56  data bytes, press CTRL_C to break

    Reply from 10.0.2.2: bytes=56 Sequence=1 ttl=255 time=3 ms

  --- 10.0.2.2 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

round-trip min/avg/max = 3/3/3 ms

[R1]ping -c 1 10.0.3.3

  PING 10.0.3.3: 56  data bytes, press CTRL_C to break

    Reply from 10.0.3.3: bytes=56 Sequence=1 ttl=255 time=2 ms

  --- 10.0.3.3 ping statistics ---

    1 packet(s) transmitted

    1 packet(s) received

    0.00% packet loss

    round-trip min/avg/max = 2/2/2 ms

使用display ospf brief命令查看路由器运行的基本OSPF信息。

[R1]display ospf brief

         OSPF Process 1 with Router ID 10.0.1.1

                 OSPF Protocol Information

 RouterID: 10.0.1.1         Border Router:

 Multi-VPN-Instance is not enabled

 Global DS-TE Mode: Non-Standard IETF Mode

 Graceful-restart capability: disabled

 Helper support capability  : not configured

 Applications Supported: MPLS Traffic-Engineering

 Spf-schedule-interval: max 10000ms, start 500ms, hold 1000ms

 Default ASE parameters: Metric: 1 Tag: 1 Type: 2

 Route Preference: 10

 ASE Route Preference: 150

 SPF Computation Count: 9     

 RFC 1583 Compatible

 Retransmission limitation is disabled

 Area Count: 1   Nssa Area Count: 0

 ExChange/Loading Neighbors: 0

 Process total up interface count: 2

 Process valid up interface count: 1

 Area: 0.0.0.0          (MPLS TE not enabled)

 Authtype: Simple   Area flag: Normal

 SPF scheduled Count: 9     

 ExChange/Loading Neighbors: 0

 Router ID conflict state: Normal

 Area interface up count: 2

 Interface: 10.0.1.1 (LoopBack0)

 Cost: 0       State: P-2-P     Type: P2P       MTU: 1500  

 Timers: Hello 10 , Dead 40 , Poll  120 , Retransmit 5 , Transmit Delay 1

 Interface: 10.0.123.1 (GigabitEthernet0/0/0)

 Cost: 1       State: DR        Type: Broadcast    MTU: 1500  

 Priority: 1

 Designated Router: 10.0.123.1

 Backup Designated Router: 10.0.123.2

 Timers: Hello 10 , Dead 40 , Poll  120 , Retransmit 5 , Transmit Delay 1

从上面的输出中我们可以看到区域0开启了明文认证(Authtype: Simple),共有两个接口参加了OSPF的运行:GigabitEthernet0/0/0和LoopBack0。其中,GigabitEthernet0/0/0为广播型网络(Broadcast),开销(Cost)为1,优先级(Priority)为1,R1自己的角色为DR,后面列出了该网络上的BDR(10.0.123.2)。另外一个运行OSPF的接口LoopBack0的网络类型为P2P。

使用display ospf peer brief命令查看路由器的OSPF邻居关系建立情况。

[R1]display ospf peer brief

         OSPF Process 1 with Router ID 10.0.1.1

                  Peer Statistic Information

 ----------------------------------------------------------------------------

 Area Id          Interface                        Neighbor id      State    

 0.0.0.0          GigabitEthernet0/0/0             10.0.2.2         Full        

 0.0.0.0          GigabitEthernet0/0/0             10.0.3.3         Full        

 ----------------------------------------------------------------------------

 Total Peer(s):     2

从上面的输出中我们可以看到在区域0.0.0.0中,R1有两个邻居,邻居的Router ID分别为10.0.2.2和10.0.3.3,他们之间的状态为Full。

使用display ospf lsdb命令查看路由器的OSPF数据库信息。

[R1]display ospf lsdb

         OSPF Process 1 with Router ID 10.0.1.1

                 Link State Database

                         Area: 0.0.0.0

 Type    LinkState ID AdvRouter         Age  Len    Sequence   Metric

 Router 10.0.3.3 10.0.3.3          1569  48    80000005       0

 Router 10.0.2.2 10.0.2.2          1568  48    80000006       0

 Router 10.0.1.1 10.0.1.1          1567  48    80000008       0

 Network 10.0.123.110.0.1.1          1567  36    80000004       0

在这里我们一共可以看到4条LSA,前3条为第一类LSA,分别由R1、R2和R3产生,我们可以通过AdvRouter判断该LSA是由哪台路由器生成的。第四条为第二类LSA,是由一个网段的DR产生的。在这里,R1是10.0.123.0/24这个网段的DR,所以我们可以看到这条LSA的AdvRouter为10.0.1.1。

[R1]display ospf lsdb router self-originate

         OSPF Process 1 with Router ID 10.0.1.1

                         Area: 0.0.0.0

                 Link State Database

  Type : Router

  Ls id      : 10.0.1.1

  Adv rtr : 10.0.1.1  

  Ls age : 430

  Len : 48

  Options :  E  

  seq# : 80000009

  chksum : 0x8188

  Link count: 2

   * Link ID: 10.0.1.1     

     Data   : 255.255.255.255

     Link Type: StubNet      

     Metric : 0

     Priority : Medium

   * Link ID : 10.0.123.1   

     Data : 10.0.123.1   

     Link Type: TransNet     

     Metric : 1

上面的输出是R1产生的Router LSA的详细信息,我们可以看到这条LSA一共描述了2个网络,第一个网络为Loopback接口所在网段,链路类型为StubNet,Link ID和Data分别是该Stub网段的IP地址和掩码。第二个网络为三台路由器的互联网段,链路类型为TransNet,可以看到Link ID为DR的端口地址10.0.123.1,Data为该网段上本地端口的IP地址10.0.123.1; 

[R1]display ospf lsdb network self-originate

         OSPF Process 1 with Router ID 10.0.1.1

                         Area: 0.0.0.0

                 Link State Database

  Type : Network

  Ls id : 10.0.123.1

  Adv rtr : 10.0.1.1  

  Ls age : 1662

  Len : 36

  Options :  E  

  seq# : 80000005

  chksum : 0x3d58

  Net mask : 255.255.255.0

  Priority : Low

     Attached Router    10.0.1.1

     Attached Router    10.0.2.2

     Attached Router    10.0.3.3

上面的输出是R1产生的Network LSA的详细信息,我们可以看到第二类LSA描述了DR所在网段的邻居信息。

步骤三.观察路由器在以太网上邻接关系的建立过程

首先查看在10.0.123.0/24网段,OSPF邻居关系中DR和BDR选举的情况,并分析为什么会这样?以及是否所有人在做这个实验时,结果都是一样的?

我们首先查看在10.0.123.0/24网段,OSPF邻居关系中DR和BDR选举的情况。从下面的输出中,我们可以得知现在该网段的DR的接口IP为10.0.123.1,BDR的接口IP为10.0.123.2。

[R1]display ospf peer

         OSPF Process 1 with Router ID 10.0.1.1

                 Neighbors

 Area 0.0.0.0 interface 10.0.123.1(GigabitEthernet0/0/0)'s neighbors

 Router ID: 10.0.2.2         Address: 10.0.123.2      

   State: Full  Mode:Nbr is  Master  Priority: 1

   DR: 10.0.123.1  BDR: 10.0.123.2  MTU: 0    

   Dead timer due in 40  sec

   Retrans timer interval: 5

   Neighbor is up for 01:03:35     

   Authentication Sequence: [ 0 ]

 Router ID: 10.0.3.3         Address: 10.0.123.3      

   State: Full  Mode:Nbr is  Master  Priority: 1

   DR: 10.0.123.1  BDR: 10.0.123.2  MTU: 0    

   Dead timer due in 33  sec

   Retrans timer interval: 5

   Neighbor is up for 01:02:27     

   Authentication Sequence: [ 0 ]

有可能每个人的实验结果输出不一样。因为在OSPF中,DR的选举不是抢占的,即网络中存在DR或BDR时,新进入网络的路由器不能抢占DR或BDR的角色。在这个网络中,先启动OSPF进程或先接入该网络的路由器成为了该网段上的DR,其他路由器成为的BDR或DROther。

当DR发生故障后,BDR就会接替DR的位置,我们在实验中可以通过重置OSPF进程的方法来观察DR角色的改变,在这里,我们重置R1的OSPF进程。

<R1>reset ospf process

Warning: The OSPF process will be reset. Continue? [Y/N]:y

[R1]display ospf peer

         OSPF Process 1 with Router ID 10.0.1.1

                 Neighbors

 Area 0.0.0.0 interface 10.0.123.1(GigabitEthernet0/0/0)'s neighbors

 Router ID: 10.0.2.2         Address: 10.0.123.2      

   State: Full  Mode:Nbr is  Master  Priority: 1

   DR: 10.0.123.2  BDR: 10.0.123.3  MTU: 0    

   Dead timer due in 34  sec

   Retrans timer interval: 0

   Neighbor is up for 00:00:19     

   Authentication Sequence: [ 0 ]

 Router ID: 10.0.3.3         Address: 10.0.123.3      

   State: Full  Mode:Nbr is  Master  Priority: 1

   DR: 10.0.123.2  BDR: 10.0.123.3  MTU: 0    

   Dead timer due in 39  sec

   Retrans timer interval: 5

   Neighbor is up for 00:00:19     

   Authentication Sequence: [ 0 ]

当重置R1的OSPF进程以后,原来该网络上的BDR 10.0.123.2成为了新的DR,原来的DROther 10.0.123.3成为了新的BDR。

下面我们关闭R1、R2与R3的G0/0/0接口,使用命令debugging ospf 1 event准备查看OSPF邻接关系建立的具体过程。然后尽量同时打开R1、R2与R3的G0/0/0接口。观察在广播式多路访问网络上邻居状态的变化过程和DR和BDR选举的过程。

<R1>debugging ospf 1 event

<R1>terminal debugging

[R1]interface  GigabitEthernet 0/0/0

[R1-GigabitEthernet0/0/0]shut

[R1-GigabitEthernet0/0/0]undo shut

<R2>debugging ospf 1 event

<R2>terminal debugging

[R2]interface  GigabitEthernet 0/0/0

[R2-GigabitEthernet0/0/0]shut

[R2-GigabitEthernet0/0/0]undo shut

<R3>debugging ospf 1 event

<R3>terminal debugging

[R3]interface  GigabitEthernet 0/0/0

[R3-GigabitEthernet0/0/0]shutdown

[R3-GigabitEthernet0/0/0]undo shutdown

在R2和R3上进行相同的操作,查看R3的debug信息。由于所有路由器默认的接口优先级都是1,所以在DR选举的时候会参考路由器的Router ID,在这三台路由器中,R3的Router ID是最大的,所以R3成为了该网段上的DR。

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:54:59.220.1+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802c Line: 1326 Level: 0x20

  OSPF 1: Intf 10.0.123.3 Rcv InterfaceUp State Down -> Waiting.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:54:59.230.1+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802c Line: 1440 Level: 0x20

  OSPF 1 Send Hello Interface Up on 10.0.123.3

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:08.550.2+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802d Line: 1200 Level: 0x20

  OSPF 1: Nbr 10.0.123.1 Rcv HelloReceived State Down -> Init.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:09.530.2+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802d Line: 1200 Level: 0x20

  OSPF 1: Nbr 10.0.123.2 Rcv HelloReceived State Down -> Init.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:18.540.2+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802d Line: 1796 Level: 0x20

  OSPF 1: Nbr 10.0.123.1 Rcv 2WayReceived State Init -> 2Way.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:19.570.2+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802d Line: 1796 Level: 0x20

  OSPF 1: Nbr 10.0.123.2 Rcv 2WayReceived State Init -> 2Way.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:39.370.1+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802d Line: 1796 Level: 0x20

  OSPF 1: Nbr 10.0.123.1 Rcv AdjOk? State 2Way -> ExStart.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:39.370.2+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802d Line: 1796 Level: 0x20

  OSPF 1: Nbr 10.0.123.2 Rcv AdjOk? State 2Way -> ExStart.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:39.370.3+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802c Line: 2127 Level: 0x20

  OSPF 1 Send Hello Interface State Changed on 10.0.123.3

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:39.370.4+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802c Line: 2138 Level: 0x20

  OSPF 1: Intf 10.0.123.3 Rcv WaitTimer State Waiting -> DR.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:39.390.1+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802d Line: 1909 Level: 0x20

  OSPF 1: Nbr 10.0.123.1 Rcv NegotiationDone State ExStart -> Exchange.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:39.390.2+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802d Line: 1909 Level: 0x20

  OSPF 1: Nbr 10.0.123.2 Rcv NegotiationDone State ExStart -> Exchange.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:39.400.1+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802d Line: 2021 Level: 0x20

  OSPF 1: Nbr 10.0.123.1 Rcv ExchangeDone State Exchange -> Loading.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:39.400.2+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802d Line: 2423 Level: 0x20

  OSPF 1: Nbr 10.0.123.1 Rcv LoadingDone State Loading -> Full.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:39.400.3+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802d Line: 2021 Level: 0x20

  OSPF 1: Nbr 10.0.123.2 Rcv ExchangeDone State Exchange -> Loading.

[R3-GigabitEthernet0/0/0]

Oct 12 2016 11:55:39.400.4+00:00 R3 RM/6/RMDEBUG:

 FileID: 0xd017802d Line: 2423 Level: 0x20

  OSPF 1: Nbr 10.0.123.2 Rcv LoadingDone State Loading -> Full.

<R1>undo debugging all

<R2>undo debugging all

<R3>undo debugging all

当刚打开接口时,接口状态由Down变为Waiting,此时路由器开始交互Hello数据包,等待约40秒以后,R3的接口由Waiting变为DR。

步骤四.配置OSPF中Loopback接口的网络类型

观察R1的路由表,关注这两条路由:10.0.2.2/32和10.0.3.3/32。

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Routing Tables: Public

         Destinations : 12       Routes : 12       

Destination/Mask    Proto  Pre Cost    Flags NextHop         Interface

       10.0.1.0/24 Direct  0    0      D   10.0.1.1        LoopBack0

       10.0.1.1/32 Direct  0    0      D   127.0.0.1       LoopBack0

     10.0.1.255/32 Direct  0    0      D   127.0.0.1       LoopBack0

       10.0.2.2/32 OSPF  10   1       D   10.0.123.2     GigabitEthernet0/0/0

       10.0.3.3/32 OSPF  10   1       D   10.0.123.3     GigabitEthernet0/0/0

     10.0.123.0/24 Direct  0    0      D   10.0.123.1     GigabitEthernet0/0/0

     10.0.123.1/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

   10.0.123.255/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

      127.0.0.0/8 Direct  0    0       D   127.0.0.1       InLoopBack0

      127.0.0.1/32 Direct  0    0      D   127.0.0.1       InLoopBack0

127.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

255.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

在配置R2和R3的Loopback接口地址时,使用的掩码是24位,分析为什么这里路由表中显示的是32位掩码的路由?

使用命令display ospf interface LoopBack 0 verbose查看OSPF在Loopback 0接口运行的状态信息。

[R1]display ospf interface LoopBack 0 verbose

         OSPF Process 1 with Router ID 10.0.1.1

                 Interfaces

 Interface: 10.0.1.1 (LoopBack0)

 Cost: 0       State: P-2-P     Type: P2P       MTU: 1500  

 Timers: Hello 10 , Dead 40 , Poll  120 , Retransmit 5 , Transmit Delay 1

  IO Statistics

             Type        Input     Output

            Hello 0          0

   DB Description 0          0

   Link-State Req 0          0

Link-State Update 0          0

   Link-State Ack 0          0

 ALLSPF GROUP

 OpaqueId: 0   PrevState: Down

可以看到对于Loopback接口,OSPF知道该网段只可能有一个IP地址,所以发布的路由的子网掩码是32位的。

修改R2的Loopback0接口的网络类型为Broadcast,OSPF在发布这个接口的网络信息时,就会使用24位掩码进行发布。

[R2]interface LoopBack 0

[R2-LoopBack0]ospf network-type broadcast

这时我们看到R2发布的Loopback 0地址的路由子网掩码为24位。

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Routing Tables: Public

         Destinations : 12       Routes : 12       

Destination/Mask    Proto  Pre Cost    Flags NextHop         Interface

       10.0.1.0/24 Direct  0    0      D   10.0.1.1        LoopBack0

       10.0.1.1/32 Direct  0    0      D   127.0.0.1       LoopBack0

     10.0.1.255/32 Direct  0    0      D   127.0.0.1       LoopBack0

       10.0.2.2/24 OSPF  10   1       D   10.0.123.2     GigabitEthernet0/0/0

       10.0.3.3/32 OSPF  10   1       D   10.0.123.3     GigabitEthernet0/0/0

     10.0.123.0/24 Direct  0    0      D   10.0.123.1     GigabitEthernet0/0/0

     10.0.123.1/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

   10.0.123.255/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

      127.0.0.0/8 Direct  0    0       D   127.0.0.1       InLoopBack0

      127.0.0.1/32 Direct  0    0      D   127.0.0.1       InLoopBack0

127.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

255.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

使用命令display ospf interface LoopBack 0 verbose查看Loopback接口的运行状态可以看到,该接口网络类型为Broadcast。

[R2]display ospf interface LoopBack 0 verbose

         OSPF Process 1 with Router ID 10.0.2.2

                 Interfaces

 Interface: 10.0.2.2 (LoopBack0)

 Cost: 0       State: DR        Type: Broadcast    MTU: 1500  

 Priority: 1

 Designated Router: 10.0.2.2

 Backup Designated Router: 0.0.0.0

 Timers: Hello 10 , Dead 40 , Poll  120 , Retransmit 5 , Transmit Delay 1

  IO Statistics

             Type        Input     Output

            Hello 0          0

   DB Description 0          0

   Link-State Req 0          0

Link-State Update 0          0

   Link-State Ack 0          0

 ALLSPF GROUP

 ALLDR GROUP

 OpaqueId: 0   PrevState: Waiting

步骤五.修改接口的OSPF代价值

首先在R1上查看R1到达R3的Loopback0接口路由的代价值,我们可以看到到达10.0.3.3/32的代价值为1。

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Routing Tables: Public

         Destinations : 12       Routes : 12       

Destination/Mask    Proto  Pre Cost    Flags NextHop         Interface

       10.0.1.0/24 Direct  0    0      D   10.0.1.1        LoopBack0

       10.0.1.1/32 Direct  0    0      D   127.0.0.1       LoopBack0

     10.0.1.255/32 Direct  0    0      D   127.0.0.1       LoopBack0

       10.0.2.2/24 OSPF  10   1       D   10.0.123.2     GigabitEthernet0/0/0

       10.0.3.3/32 OSPF  10   1       D   10.0.123.3     GigabitEthernet0/0/0

     10.0.123.0/24 Direct  0    0      D   10.0.123.1     GigabitEthernet0/0/0

     10.0.123.1/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

   10.0.123.255/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

      127.0.0.0/8 Direct  0    0       D   127.0.0.1       InLoopBack0

      127.0.0.1/32 Direct  0    0      D   127.0.0.1       InLoopBack0

127.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

255.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

修改R1的G0/0/0接口代价值为20,修改R3的G0/0/0接口代价值为10。

[R1]interface GigabitEthernet 0/0/0

[R1-GigabitEthernet0/0/0]ospf cost 20

[R1-GigabitEthernet0/0/0]quit

[R3]interface GigabitEthernet 0/0/0

[R3-GigabitEthernet0/0/0]ospf cost 10

[R3-GigabitEthernet0/0/0]quit

重新查看R1到达R3的Loopback0接口路由的代价值,可以看到,到达10.0.3.3/32的代价值为20。

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Routing Tables: Public

         Destinations : 12       Routes : 12       

Destination/Mask    Proto  Pre Cost    Flags NextHop         Interface

       10.0.1.0/24 Direct  0    0      D   10.0.1.1        LoopBack0

       10.0.1.1/32 Direct  0    0      D   127.0.0.1       LoopBack0

     10.0.1.255/32 Direct  0    0      D   127.0.0.1       LoopBack0

       10.0.2.2/24 OSPF  10   20      D   10.0.123.2     GigabitEthernet0/0/0

       10.0.3.3/32 OSPF  10   20       D   10.0.123.3     GigabitEthernet0/0/0

     10.0.123.0/24 Direct  0    0      D   10.0.123.1     GigabitEthernet0/0/0

     10.0.123.1/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

   10.0.123.255/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

      127.0.0.0/8 Direct  0    0       D   127.0.0.1       InLoopBack0

      127.0.0.1/32 Direct  0    0      D   127.0.0.1       InLoopBack0

127.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

255.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

在R3上查看10.0.1.1/32的代价值,可以看到值为10。

[R3]display ip routing-table

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Routing Tables: Public

         Destinations : 12       Routes : 12       

Destination/Mask    Proto  Pre  Cost   Flags NextHop         Interface

       10.0.1.1/32 OSPF    10   10 D   10.0.123.1     GigabitEthernet0/0/0

       10.0.2.0/24 OSPF    10   10 D   10.0.123.2     GigabitEthernet0/0/0

       10.0.3.0/24 Direct  0    0 D   10.0.3.3        LoopBack0

       10.0.3.3/32 Direct  0    0 D   127.0.0.1       LoopBack0

     10.0.3.255/32 Direct     0    0 D   127.0.0.1       LoopBack0

     10.0.123.0/24 Direct  0    0 D   10.0.123.3     GigabitEthernet0/0/0

     10.0.123.3/32 Direct  0    0 D   127.0.0.1      GigabitEthernet0/0/0

   10.0.123.255/32 Direct  0    0 D   127.0.0.1      GigabitEthernet0/0/0

      127.0.0.0/8 Direct  0    0 D   127.0.0.1       InLoopBack0

      127.0.0.1/32 Direct  0    0 D   127.0.0.1       InLoopBack0

127.255.255.255/32Direct  0    0 D   127.0.0.1       InLoopBack0

255.255.255.255/32Direct  0    0 D   127.0.0.1       InLoopBack0

步骤六.配置OSPF的Silent-interface

配置R1的G0/0/0接口为Silent-interface。

[R1]ospf 1

[R1-ospf-1]silent-interface GigabitEthernet 0/0/0

[R1-ospf-1]quit

查看R1的邻居关系建立和路由表学习情况可发现,路由表中从OSPF学习到的路由条目消失了。

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Routing Tables: Public

         Destinations : 12       Routes : 12       

Destination/Mask    Proto  Pre Cost    Flags NextHop         Interface

       10.0.1.0/24 Direct  0    0      D   10.0.1.1        LoopBack0

       10.0.1.1/32 Direct  0    0      D   127.0.0.1       LoopBack0

     10.0.1.255/32 Direct  0    0      D   127.0.0.1       LoopBack0

     10.0.123.0/24 Direct  0    0      D   10.0.123.1     GigabitEthernet0/0/0

     10.0.123.1/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

   10.0.123.255/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

      127.0.0.0/8 Direct  0    0       D   127.0.0.1       InLoopBack0

      127.0.0.1/32 Direct  0    0      D   127.0.0.1       InLoopBack0

127.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

255.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

查看R1的邻居列表可以看到R1和R2、R3之间的邻居关系也消失了。在RIP中将一个接口置为Silent-interface以后,该接口不再发送RIP更新;但在OSPF中,路由器之间需要建立邻居关系之后才会交互路由信息,当一个接口被设置为Silent-interface以后,该接口不再接收或发送Hello包,造成该接口不能和其他路由器形成邻居关系。

 [R1]display ospf interface GigabitEthernet 0/0/0

         OSPF Process 1 with Router ID 10.0.1.1

                 Interfaces

 Interface: 10.0.123.1 (GigabitEthernet0/0/0)

 Cost: 20      State: DR        Type: Broadcast    MTU: 1500  

 Priority: 1

 Designated Router: 10.0.123.1

 Backup Designated Router: 0.0.0.0

 Timers: Hello 10 , Dead 40 , Poll  120 , Retransmit 5 , Transmit Delay 1

 Silent interface, No hellos

恢复R1的G0/0/0接口为默认状态,将三个路由器的Loopback0接口配置为Silent-interface。

[R1]ospf 1

[R1-ospf-1]undo silent-interface GigabitEthernet0/0/0

[R1-ospf-1]silent-interface LoopBack 0

[R1-ospf-1]quit

[R2]ospf 1

[R2-ospf-1]silent-interface LoopBack 0

[R1-ospf-1]quit

[R3]ospf 1

[R3-ospf-1]silent-interface LoopBack 0

[R1-ospf-1]quit

检查R1的路由表可见,将Loopback设为Silent-interface以后不影响该接口路由的发布。

[R1]display ip routing-table

Route Flags: R - relay, D - download to fib

----------------------------------------------------------------------------

Routing Tables: Public

         Destinations : 12       Routes : 12       

Destination/Mask    Proto  Pre Cost    Flags NextHop         Interface

       10.0.1.0/24 Direct  0    0      D   10.0.1.1        LoopBack0

       10.0.1.1/32 Direct  0    0      D   127.0.0.1       LoopBack0

     10.0.1.255/32 Direct  0    0      D   127.0.0.1       LoopBack0

       10.0.2.0/24 OSPF  10   20      D   10.0.123.2     GigabitEthernet0/0/0

       10.0.3.3/32 OSPF  10   20       D   10.0.123.3     GigabitEthernet0/0/0

     10.0.123.0/24 Direct  0    0      D   10.0.123.1     GigabitEthernet0/0/0

     10.0.123.1/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

   10.0.123.255/32 Direct  0    0      D   127.0.0.1      GigabitEthernet0/0/0

      127.0.0.0/8 Direct  0    0       D   127.0.0.1       InLoopBack0

      127.0.0.1/32 Direct  0    0      D   127.0.0.1       InLoopBack0

127.255.255.255/32Direct  0    0       D   127.0.0.1       InLoopBack0

附加实验: 思考并验证

为什么在配置OSPF时,使用的通配符掩码是0.0.0.0,实际的配置中,也可以使用通配符掩码0.0.0.255,思考一下,这两种表达形式有什么差异?

分析在实际的网络中,哪些类型的接口应该配置为Silent-interface接口?

最终设备配置

<R1>display current-configuration 

[V200R007C00SPC600]

#

 sysname R1

#

interface GigabitEthernet0/0/0

 ip address 10.0.123.1 255.255.255.0

 ospf cost 20

#

interface LoopBack0

 ip address 10.0.1.1 255.255.255.0

#

ospf 1 router-id 10.0.1.1

 silent-interface LoopBack0

 area 0.0.0.0

  authentication-mode simple plain huawei

  network 10.0.1.1 0.0.0.0

  network 10.0.123.1 0.0.0.0

#

return

<R2>display current-configuration

[V200R007C00SPC600]

#

 sysname R2

#

interface GigabitEthernet0/0/0

 ip address 10.0.123.2 255.255.255.0

#

interface LoopBack0

 ip address 10.0.2.2 255.255.255.0

 ospf network-type broadcast

#

ospf 1 router-id 10.0.2.2

 silent-interface LoopBack0

 area 0.0.0.0

  authentication-mode simple plain huawei

  network 10.0.2.2 0.0.0.0

  network 10.0.123.2 0.0.0.0

#

return

<R3>display current-configuration 

[V200R007C00SPC600]

#

 sysname R3

#

interface GigabitEthernet0/0/0

 ip address 10.0.123.3 255.255.255.0

 ospf cost 10

#

interface LoopBack0

 ip address 10.0.3.3 255.255.255.0

#

ospf 1 router-id 10.0.3.3

 silent-interface LoopBack0

 area 0.0.0.0

  authentication-mode simple plain huawei

  network 10.0.3.3 0.0.0.0

 network 10.0.123.3 0.0.0.0

#

return

猜你喜欢

转载自blog.csdn.net/weixin_57099902/article/details/131833018