[论文阅读笔记58]Learning from Noisy Labels with Deep Neural Networks:A Survey

1.题目

Learning from Noisy Labels with Deep Neural Networks: A Survey
作者团队:韩国科学技术院(KAIST)
Song H , Kim M , Park D , et al. Learning from Noisy Labels with Deep Neural Networks: A Survey. 2020.

2. 摘要

  1. 重述问题:从监督学习的角度来描述使用标签噪声学习的问题;

  2. 方法回顾:对57种最先进的鲁棒训练方法进行了全面的回顾,并根据其方法差异分为5组;然后系统地比较了六种属性来评估它们的优越性;

  3. 评估:对噪声率估计进行了深入的分析,并总结了典型使用的评估方法,包括公共噪声数据集和评估指标;

  4. 总结:我们提出了几个很有前途的研究方向。

3. 研究Noise Learn的意义

image-20210826162908486

对比了三种情况,第一种是clean数据的训练情况;第二种是noise数据没有加入Reg(正则化)的情况;第三种是noise数据加入了Reg的情况;一般情况下我们想方设法去处理正则的内容(data augmentation,weight decay,dropout, batch normalization),可是noise的影响也是很大的,像图中的Gap.

4. 目前的相关综述

Frenay and Verleysen [12] —Classifification in the presence of label noise: A survey-2013–经典的监督学习(说明了noise的定义,来源等等相关内容。Bayes,SVM)—讲述了noise学习的统计学习;

image-20210826170311179

Zhang et al. [27]—Learning from crowdsourced labeled data: A survey–2016-- 讨论众包数据方法(expectation maximization (EM) algorithms)—其实这是不错的一篇综述,工程上挺有用的,众包情景就是一个好的情境。

这篇论文可以结合弱监督的论文来看,特征在后面的推理Ground truth那里。

image-20210826171722791

image-20210826170937881image-20210826171435481工具:The project CEKA is available at: http://ceka.sourceforge.net/

img

image-20210826174542899

Nigam et al.[28] -Impact of noisy labels in learning techniques: A survey- 2020-- 局限在 the loss function and sample selection 两方面

image-20210826165126184

image-20210826165319219

Hanet al. [29] --A survey of label-noise representation learning: Past,present and future-- 2020-- 总结了带有噪声标签的robust学习的基本组成部分,但它们的分类与我们的哲学分类完全不同;从机器学习的定义出去去讲述Noise学习的问题,对于理解机器学习有很帮助的一篇文章,之前也看到篇相关的,忘记哪篇了,也是从机器学习定义出发去讲述一件事情;

  1. 给出LNRL的定义;
  2. 从学习理论的视角对Noise训练有更深一层的理解;
  3. 从数据、目标,优化算子的角度进行了分类;并分析了各类的优缺点;
  4. 提出了新的研究方法;
  5. https://github.com/bhanML/label-noise-papers

这篇文章写得也比较清淅的:

第1节,引言;写作动机与贡献,文章组织情况;

第2节写了Lable-Noise学习的相关文献,完整版本见附录1(早期(1988开始)–Emerging Stage(2015)-- Flourished Stage(2019));

第3节综述的概述,包括LNRL的正式定义、核心问题,以及根据数据、目标和优化对现有工作的分类;

第4节针对利用噪声转换矩阵来求解LNRL的方法;

第5节是关于修改目标函数以使LNRL可行的方法;

第6节是关于利用深度网络的特性来解决LNRL问题的方法;

在第7节中,我们提出了LNRL的未来发展方向。除了LNRL之外,该调查还揭示了几个很有前途的未来方向;

在第8节,总结;

image-20210827153240171

对于数据,主要是一个Noise transition matrix T,T提示了clean标注与noise标注的关系;使用三种方法去使用T来处理Noise标注;

5. 预备知识

这篇综述主要是在系统的方法论上,[29]关注的是一般的视角上( input data, objective functions, optimization policies);

这个综述对存在的robust训练方法作了一个对比;

5.0 lable-noise的监督学习;

5.1 标签噪声分类

​ a.独立于实例的标签噪声;

​ b.依赖实例的标签噪声;

5.2 非深度学习方法—分成四类

​ a. 数据清洗;

​ b. Surrogate Loss(代理损失函数)

​ c. 概率方法

​ d. 基于模型方法

5.3 理论基础

​ a.Label Transition: 从数据的角度来看,noise是来源于label的转移矩阵;这个转移矩阵可以发现其中的内在关系;

image-20210827163116995

​ b. Risk Minimization

​ c. Memorization Effect

5.4 Regression with Noisy Labels

6. 深度学习方法

深度学习的robust训练(分为5类):

image-20210827163740746

它的关注点是深度学习在监督学习过程中更robust.

image-20210827172705721

(P1) Flexibility,(P2) No Pre-training,(P3) Full Exploration,(P4) No Supervision(P5) Heavy Noise(P6) Complex Noise

圆圈:完全支持,叉:不支持,三角:支持但不完全支持

6.1 Robust框架

在DNN上增加一个Noise适应层去学习label transition,或开了一个专用架构来处理;

6.1.A Noise Adaptation Layer

image-20210827165215595

这个方法的原理:

image-20210827165408835

论文:Training deep neural-networks using a noise adaptation layer,” in Proc. ICLR, 2017.

这论文采用了EM算法来处理,理论性学是比较强的。

A.1. Noise Adaptation Layer

Year Venue Title Implementation
2015 ICCV Webly supervised learning of convolutional networks Official (Caffe)
2015 ICLRW Training convolutional networks with noisy labels Unofficial (Keras)
2016 ICDM Learning deep networks from noisy labels with dropout regularization Official (MATLAB)
2016 ICASSP Training deep neural-networks based on unreliable labels Unofficial (Chainer)
2017 ICLR Training deep neural-networks using a noise adaptation layer Official (Keras)

A.2. Dedicated Architecture(专门架构)

Year Venue Title Implementation
2015 CVPR Learning from massive noisy labeled data for image classification Official (Caffe) 管理了两个独立的网络
2018 NeurIPS Masking: A new perspective of noisy supervision Official (TensorFlow) 人工辅助的方法
2018 TIP Deep learning from noisy image labels with quality embedding N/A
2019 ICML Robust inference via generative classifiers for handling noisy labels Official (PyTorch)
6.2 Robust正则化

B.1. Explicit Regularization

Year Venue Title Implementation
2018 ECCV Deep bilevel learning Official (TensorFlow)
2019 CVPR Learning from noisy labels by regularized estimation of annotator confusion Official (TensorFlow)
2019 ICML Using pre-training can improve model robustness and uncertainty Official (PyTorch)
2020 ICLR Can gradient clipping mitigate label noise? Unofficial (PyTorch)
2020 ICLR Wasserstein adversarial regularization (WAR) on label noise N/A
2021 ICLR Robust early-learning: Hindering the memorization of noisy labels Official (PyTorch)

B.2. Implicit Regularization

Year Venue Title Implementation
2015 ICLR Explaining and harnessing adversarial examples Unofficial (PyTorch)
2017 ICLRW Regularizing neural networks by penalizing confident output distributions Unofficial (PyTorch)
2018 ICLR Mixup: Beyond empirical risk minimization Official (PyTorch)

C. Robust Loss Function

Year Venue Title Implementation
2017 AAAI Robust loss functions under label noise for deep neural networks N/A
2017 ICCV Symmetric cross entropy for robust learning with noisy labels Official (Keras)
2018 NeurIPS Generalized cross entropy loss for training deep neural networks with noisy labels Unofficial (PyTorch)
2020 ICLR Curriculum loss: Robust learning and generalization against label corruption N/A
2020 ICML Normalized loss functions for deep learning with noisy labels Official (PyTorch)
2020 ICML Peer loss functions: Learning from noisy labels without knowing noise rates Official (PyTorch)
6.D 损失函数调整

改进损失函数;

D.1. Loss Correction

Year Venue Title Implementation
2017 CVPR Making deep neural networks robust to label noise: A loss correction approach Official (Keras)
2018 NeurIPS Using trusted data to train deep networks on labels corrupted by severe noise Official (PyTorch)
2019 NeurIPS Are anchor points really indispensable in label-noise learning? Official (PyTorch)
2020 NeurIPS Dual T: Reducing estimation error for transition matrix in label-noise learning N/A

D.2. Loss Reweighting

Year Venue Title Implementation
2017 TNNLS Multiclass learning with partially corrupted labels Unofficial (PyTorch)
2017 NeurIPS Active Bias: Training more accurate neural networks by emphasizing high variance samples Unofficial (TensorFlow)

D.3. Label Refurbishment

Year Venue Title Implementation
2015 ICLR Training deep neural networks on noisy labels with bootstrapping Unofficial (Keras)
2018 ICML Dimensionality-driven learning with noisy labels Official (Keras)
2019 ICML Unsupervised label noise modeling and loss correction Official (PyTorch)
2020 NeurIPS Self-adaptive training: beyond empirical risk minimization Official (PyTorch)
2020 ICML Error-bounded correction of noisy labels Official (PyTorch)
2021 AAAI Beyond class-conditional assumption: A primary attempt to combat instancedependent label noise Official (PyTorch)

D.4. Meta Learning

Year Venue Title Implementation
2017 NeurIPSW Learning to learn from weak supervision by full supervision Unofficial (TensorFlow)
2017 ICCV Learning from noisy labels with distillation N/A
2018 ICML Learning to reweight examples for robust deep learning Official (TensorFlow)
2019 NeurIPS Meta-Weight-Net: Learning an explicit mapping for sample weighting Official (PyTorch)
2020 CVPR Distilling effective supervision from severe label noise Official (TensorFlow)
2021 AAAI Meta label correction for noisy label learning Official (PyTorch)
6.4 样本选择

通过多网络或多轮学习,从有噪声的训练数据中识别true-labeled的样本。

E.1. Multi-network Learning – 多网络学习

Year Venue Title Implementation
2017 NeurIPS Decoupling when to update from how to update Official (TensorFlow)
2018 ICML MentorNet: Learning data-driven curriculum for very deep neural networks on corrupted labels Official (TensorFlow)
2018 NeurIPS Co-teaching: Robust training of deep neural networks with extremely noisy labels Official (PyTorch)
2019 ICML How does disagreement help generalization against label corruption? Official (PyTorch)

E.2. Multi-round Learning–多轮学习方法

Year Venue Title Implementation
2018 CVPR Iterative learning with open-set noisy labels Official (Keras)
2019 ICML Learning with bad training data via iterative trimmed loss minimization Official (GluonCV)
2019 ICML Understanding and utilizing deep neural networks trained with noisy labels Official (Keras)
2019 ICCV O2U-Net: A simple noisy label detection approach for deep neural networks Unofficial (PyTorch)
2020 ICMLW How does early stopping can help generalization against label noise? Official (Tensorflow)
2020 NeurIPS A topological filter for learning with label noise Official (PyTorch)

E.3. Hybrid Learning

Year Venue Title Implementation
2019 ICML SELFIE: Refurbishing unclean samples for robust deep learning Official (TensorFlow)
2020 ICLR SELF: Learning to filter noisy labels with self-ensembling N/A
2020 ICLR DivideMix: Learning with noisy labels as semi-supervised learning Official (PyTorch)
2021 ICLR Robust curriculum learning: from clean label detection to noisy label self-correction N/A

7. 数据集

image-20210827173349839

8. 总结

其实弱监督学习,noise学习,主动学习,出发点都是想去解决语料的问题。弱监督是想在没有标准的数据上进行自动标注,然后对这些标注进行软合并;noise学习,解决标注出来数据的noise问题;主动学习,就是用机器到已标注的数据进行学习,对未标注的样本进行估计,目前是想用直可能标注的样本数据来代替整个样本集的内容。

可是发现,很多领域都是在处理图像的,自然语言是否可以考虑?

9. 参考

论文:https://arxiv.org/pdf/2007.08199.pdf
相关资料: https://github.com/songhwanjun/Awesome-Noisy-Labels

附:

LNRL: Label-Noise Representation Learning

LNSL: label-noise statistical learning

surrogate loss function:代理损失函数或者称为替代损失函数,一般是指当目标函数非凸、不连续时,数学性质不好,优化起来比较复杂,这时候需要使用其他的性能较好的函数进行替换。

ICCV 的全称是 IEEE International Conference on Computer Vision,即国际计算机视觉大会

ICDM(国际数据挖掘会议)
IEEE国际声学、语言和信号处理会议(ICASSP)
国际学习表征会议(International Conference On Learning Representations)

猜你喜欢

转载自blog.csdn.net/ld326/article/details/119963257