Spark Core(四)用LogQuery的例子来说明Executor是如何运算RDD的算子(转载)

1. 究竟是怎么运行的?

很多的博客里大量的讲了什么是RDD, Dependency, Shuffle.......但是究竟那些Executor是怎么运行你提交的代码段的?
下面是一个日志分析的例子,来自Spark的example
def main(args: Array[String]) {  
  val sparkConf = new SparkConf().setAppName("Log Query")  
  val sc = new SparkContext(sparkConf)  
  val dataSet =  
    if (args.length == 1) sc.textFile(args(0)) else sc.parallelize(exampleApacheLogs)  
  // scalastyle:off  
  val apacheLogRegex =  
    """^([\d.]+) (\S+) (\S+) 
([\w\d:/]+\s[+\-]\d4)
 "(.+?)" (\d{3}) ([\d\-]+) "([^"]+)" "([^"]+)".*""".r  
  // scalastyle:on  
  /** Tracks the total query count and number of aggregate bytes for a particular group. */  
  class Stats(val count: Int, val numBytes: Int) extends Serializable {  
    def merge(other: Stats): Stats = {  
      new Stats(count + other.count, numBytes + other.numBytes)  
    }  
    override def toString: String = "bytes=%s\tn=%s".format(numBytes, count)  
  }  
  
  def extractKey(line: String): (String, String, String) = {  
    apacheLogRegex.findFirstIn(line) match {  
      case Some(apacheLogRegex(ip, _, user, dateTime, query, status, bytes, referer, ua)) =>  
        if (user != "\"-\"") (ip, user, query)  
        else (null, null, null)  
      case _ => (null, null, null)  
    }  
  }  
  
  def extractStats(line: String): Stats = {  
    apacheLogRegex.findFirstIn(line) match {  
      case Some(apacheLogRegex(ip, _, user, dateTime, query, status, bytes, referer, ua)) =>  
        new Stats(1, bytes.toInt)  
      case _ => new Stats(1, 0)  
    }  
  }  
  
  dataSet.map(line => (extractKey(line), extractStats(line)))  
    .reduceByKey((c, d) => c.merge(d))  
    .collect().foreach{  
      case (user, query) => println("%s\t%s".format(user, query))}  
  
  sc.stop()  
}  
在map的RDD算子里,自定义了extractKey, extractStats函数,而在reduceByKey的RDD又自定义了一个相同的key的merge函数
这些函数是如何被传递到executor里并且进行运算的呢?

1.1 RDD,ShuffleDependency

在前面的博文(Executor上是如何launch task的)中,已经讨论过如何获取到Driver的RDD, Dependency, 那么RDD如何能够运行这些函数呢?
 
Execute获取的DAG里提交的ShuffleMapTask是在TaskDecription中serializedTask中反序列化出来
ShuffleMapTask的RunTask的方法
override def runTask(context: TaskContext): MapStatus = {  
   // Deserialize the RDD using the broadcast variable.  
   val threadMXBean = ManagementFactory.getThreadMXBean  
   val deserializeStartTime = System.currentTimeMillis()  
   val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {  
     threadMXBean.getCurrentThreadCpuTime  
   } else 0L  
   val ser = SparkEnv.get.closureSerializer.newInstance()  
   val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](  
     ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)  
   _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime  
   _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) {  
     threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime  
   } else 0L  
  
   var writer: ShuffleWriter[Any, Any] = null  
   try {  
     val manager = SparkEnv.get.shuffleManager  
     writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)  
     writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])  
     writer.stop(success = true).get  
   } catch {  
     case e: Exception =>  
       try {  
         if (writer != null) {  
           writer.stop(success = false)  
         }  
       } catch {  
         case e: Exception =>  
           log.debug("Could not stop writer", e)  
       }  
       throw e  
   }  
 }  
看到了通过shufflewrite去写迭代的rdd数据

1.1.1 ShuffleWrite

ShuffleWrite的构建是通过shuffleManager来获取的,在SortShuffleManager.scala中
/** Get a writer for a given partition. Called on executors by map tasks. */  
 override def getWriter[K, V](  
     handle: ShuffleHandle,  
     mapId: Int,  
     context: TaskContext): ShuffleWriter[K, V] = {  
   numMapsForShuffle.putIfAbsent(  
     handle.shuffleId, handle.asInstanceOf[BaseShuffleHandle[_, _, _]].numMaps)  
   val env = SparkEnv.get  
   handle match {  
     case unsafeShuffleHandle: SerializedShuffleHandle[K @unchecked, V @unchecked] =>  
       new UnsafeShuffleWriter(  
         env.blockManager,  
         shuffleBlockResolver.asInstanceOf[IndexShuffleBlockResolver],  
         context.taskMemoryManager(),  
         unsafeShuffleHandle,  
         mapId,  
         context,  
         env.conf)  
     case bypassMergeSortHandle: BypassMergeSortShuffleHandle[K @unchecked, V @unchecked] =>  
       new BypassMergeSortShuffleWriter(  
         env.blockManager,  
         shuffleBlockResolver.asInstanceOf[IndexShuffleBlockResolver],  
         bypassMergeSortHandle,  
         mapId,  
         context,  
         env.conf)  
     case other: BaseShuffleHandle[K @unchecked, V @unchecked, _] =>  
       new SortShuffleWriter(shuffleBlockResolver, other, mapId, context)  
   }  
 }  
在ShuffleDependency中保存着ShuffleHandle, ShuffleHandle中也保存着Dependency
  1. 在Driver DAG 中registerShuffle中dependency决定着使用什么ShuffleHandle
  2. 在Executor的shuffleManager中是由dependency中的ShuffleHandle来决定什么ShuffleWrite
题外话:Dependency本身就可以直接决定shuffleWrite,整个ShuffleHandle只是在SortShuffleWriter的时候用于获取了dependency, Executor端SortShuffleWriter本身就能获取到Dependency,ShuffleHandle感觉就是一个鸡肋。
 
在日志分析的这个代码案例中,返回的是SortShuffleWriter

1.1.2 RDD.iterator

在ShuffleMapTask中的runTask方法
writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) 

writer在调用的write函数中传递了rdd.iterator,也就是通过rdd构造的迭代器

final def iterator(split: Partition, context: TaskContext): Iterator[T] = {  
   if (storageLevel != StorageLevel.NONE) {  
     getOrCompute(split, context)  
   } else {  
     computeOrReadCheckpoint(split, context)  
   }  
 }  

Map的rdd的构造迭代器MapPartitionsRDD,MapPartitionsRDD并没有设置缓存或者存储,StorageLevel是NONE,调用computerOrReadCheckpoint方法

/**  
 * Compute an RDD partition or read it from a checkpoint if the RDD is checkpointing.  
 */  
private[spark] def computeOrReadCheckpoint(split: Partition, context: TaskContext): Iterator[T] =  
{  
  if (isCheckpointedAndMaterialized) {  
    firstParent[T].iterator(split, context)  
  } else {  
    compute(split, context)  
  }  
}  

也没有做过checkpointed ,调用compute方法

override def compute(split: Partition, context: TaskContext): Iterator[U] =  
  f(context, split.index, firstParent[T].iterator(split, context))  

先来看fistParent

/** Returns the first parent RDD */  
protected[spark] def firstParent[U: ClassTag]: RDD[U] = {  
  dependencies.head.rdd.asInstanceOf[RDD[U]]  
}  

每个RDD都会保存一个Dependency的数组,Dependency里有RDD的属性,而Dependency数组的头一个dependency的RDD,就是处理数据的首个RDD,也就是如下的代码里的dataSet

val dataSet =  
      if (args.length == 1) sc.textFile(args(0)) else sc.parallelize(exampleApacheLogs)  
我们以parallelize为例子,所对应的RDD就是ParallelCollectionRDD回到
firstParent[T].iterator(split, context))  

iterator函数就是前面的RDD函数,StorageLevel依然是NONE,也没有做过checkpointed,依然还是调用compute的方法

override def compute(s: Partition, context: TaskContext): Iterator[T] = {  
  new InterruptibleIterator(context, s.asInstanceOf[ParallelCollectionPartition[T]].iterator)  
}  

生成了一个InterruptibleIterator迭代器,迭代器本质只是一个代理的迭代器

@DeveloperApi  
class InterruptibleIterator[+T](val context: TaskContext, val delegate: Iterator[T])  
  extends Iterator[T] {  
  
  def hasNext: Boolean = {  
    // TODO(aarondav/rxin): Check Thread.interrupted instead of context.interrupted if interrupt  
    // is allowed. The assumption is that Thread.interrupted does not have a memory fence in read  
    // (just a volatile field in C), while context.interrupted is a volatile in the JVM, which  
    // introduces an expensive read fence.  
    if (context.isInterrupted) {  
      throw new TaskKilledException  
    } else {  
      delegate.hasNext  
    }  
  }  
  
  def next(): T = delegate.next()  
}  

当发现有打断命令的时候,直接抛出TaskKilledException的异常,其所代理的iterator 是

s.asInstanceOf[ParallelCollectionPartition[T]].iterator 

ParallelCollectionRDD的Partition就是ParallelCollectionPartition

private[spark] class ParallelCollectionPartition[T: ClassTag](  
    var rddId: Long,  
    var slice: Int,  
    var values: Seq[T]  
  ) extends Partition with Serializable {  
  
  def iterator: Iterator[T] = values.iterator  
   .......  
}  

Values是需要支持序列化的数组,在Driver端ParallelCollectionRDD中将数据Data进行了ParallelCollectionPartition的分片,分片的数据Values被保存在了ParallelCollectionPartition里,数据并没有被保存在ParallelCollectionRDD中,所以进行计算的数据并不是通过RDD传递过来的,而是通过反序列化ShuffleMapTask获得的,走的是直接的rpc通道

private[spark] class ShuffleMapTask(  
    stageId: Int,  
    stageAttemptId: Int,  
    taskBinary: Broadcast[Array[Byte]],  
    partition: Partition,  
    @transient private var locs: Seq[TaskLocation],  
    metrics: TaskMetrics,  
    localProperties: Properties,  
    jobId: Option[Int] = None,  
    appId: Option[String] = None,  
    appAttemptId: Option[String] = None)  
  extends Task[MapStatus](stageId, stageAttemptId, partition.index, metrics, localProperties, jobId,  
    appId, appAttemptId)  

回到MapPartitionsRDD原来的函数中去:

override def compute(split: Partition, context: TaskContext): Iterator[U] =  
  f(context, split.index, firstParent[T].iterator(split, context))  

要看看f是什么?RDD.map函数

def map[U: ClassTag](f: T => U): RDD[U] = withScope {  
  val cleanF = sc.clean(f)  
  new MapPartitionsRDD[U, T](this, (context, pid, iter) => iter.map(cleanF))  
}  

我们在看看我们是如何调用map函数的:

dataSet.map(line => (extractKey(line), extractStats(line)))
f(context, split.index, firstParent[T].iterator(split, context))就是调用了(context, pid,iter) =>iter.map(cleanF) 关键的是iter.map函数这是scala的基本函数,查看scala代码Iterator.scala
def map[B](f: A => B): Iterator[B] = new AbstractIterator[B] {  
   def hasNext = self.hasNext  
   def next() = f(self.next())  
 }  
返回的可以简单的认为AbstractIterator,self 指向的是InterruptibleIterator,f 就是 line => (extractKey(line), extractStats(line))
我们来看ExternalSorter.scala通过迭代器获取Partiton的数据并进行运算的代码
while (records.hasNext) {  
        addElementsRead()  
        kv = records.next()  
        map.changeValue((getPartition(kv._1), kv._1), update)  
        maybeSpillCollection(usingMap = true)  
      }  
  • AbstractIterator.hasNext -> InterruptibleIterator.hasNext ->  Elements( Seq.interator).hasNext -> def hasNext: Boolean = index < end
  • AbstractIterator.next() -> InterruptibleIterator.next() -> Elements( Seq.interator).next(). -> f(InterruptibleIterator.next()) ->(extractKey(InterruptibleIterator.next()), extractStats(InterruptibleIterator.next()))
运算extractKey, extractStats后返回的是一个Product2[Tuple3(String,String,String),Stats] KV值
 
还记得executor会loadDriver的jar么?虽然在scala里所定义函数都默认支持反序列化,但是在运行方法并不需要反序列化,只要加载jar包,classload 这个我们写的driver的类就可以了。

1.1.3 reduceByKey算子

在LogQuery中
.reduceByKey((c, d) => c.merge(d))  

我们来看PairRDDFunction.scala中的reduceByKey,为什么PairRDDFunction不是RDD在前面的博客已经描述过

def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = self.withScope {  
    combineByKeyWithClassTag[V]((v: V) => v, func, func, partitioner)  
  }  

combineByKeyWithClassTag函数中

def combineByKeyWithClassTag[C](  
      createCombiner: V => C,  
      mergeValue: (C, V) => C,  
      mergeCombiners: (C, C) => C,  
      partitioner: Partitioner,  
      mapSideCombine: Boolean = true,  
      serializer: Serializer = null)(implicit ct: ClassTag[C]): RDD[(K, C)] = self.withScope {  
    require(mergeCombiners != null, "mergeCombiners must be defined") // required as of Spark 0.9.0  
    if (keyClass.isArray) {  
      if (mapSideCombine) {  
        throw new SparkException("Cannot use map-side combining with array keys.")  
      }  
      if (partitioner.isInstanceOf[HashPartitioner]) {  
        throw new SparkException("HashPartitioner cannot partition array keys.")  
      }  
    }  
    val aggregator = new Aggregator[K, V, C](  
      self.context.clean(createCombiner),  
      self.context.clean(mergeValue),  
      self.context.clean(mergeCombiners))  
    if (self.partitioner == Some(partitioner)) {  
      self.mapPartitions(iter => {  
        val context = TaskContext.get()  
        new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context))  
      }, preservesPartitioning = true)  
    } else {  
      new ShuffledRDD[K, V, C](self, partitioner)  
        .setSerializer(serializer)  
        .setAggregator(aggregator)  
        .setMapSideCombine(mapSideCombine)  
    }  
  }  
在以前都没有介绍过Aggregator,我们来介绍一下这个Aggregator,Aggregator有三个关键函数
  1. createCombiner: 通过Map获得的新KV, 在Key不存在的情况下将V转化为C
  2. mergeValue: 通过Map获得的新KV, 在已经存在相同的Key情况下,将新获得的V聚合到C
  3. mergeCombiners: 分布式计算的时候,最后要每个RDD的分区最后汇总,汇总的时候对相同的Key,已经聚合的C和另一个分区已经聚合的C再次聚合
在logquery的例子中,mergeValue, mergeCombiners 就是 (c,d)  =>c.merge(d)            createCombiner就是 stats不变
还是回到ExternalSorter.scala的insertAll中
val mergeValue = aggregator.get.mergeValue  
      val createCombiner = aggregator.get.createCombiner  
      var kv: Product2[K, V] = null  
      val update = (hadValue: Boolean, oldValue: C) => {  
        if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2)  
      }  
      while (records.hasNext) {  
        addElementsRead()  
        kv = records.next()  
        map.changeValue((getPartition(kv._1), kv._1), update)  
        maybeSpillCollection(usingMap = true)  
      }  

我们看到在map.changeValue的时候,通过update的方法更新相同的key

val update = (hadValue: Boolean, oldValue: C) => {  
        if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2)  
      }  

mergeValue,createCombiner就是从Aggregator中获取到的,而Aggregator被保存在ShuffledRDD和ShuffledDependency中,ShuffledDependency是通过Driver RPC传递给Executor的,所以可以从ShuffledDependency获取到Aggregator,通过Aggregator里指定的算法进行KV的操作,而mergeValue就是Driver中的c.merge(d),因为c 是stats 对象

class Stats(val count: Int, val numBytes: Int) extends Serializable {  
  def merge(other: Stats): Stats = {  
    new Stats(count + other.count, numBytes + other.numBytes)  
  }  
  override def toString: String = "bytes=%s\tn=%s".format(numBytes, count)  
}  
调用了Stats.merge的方法

2. 总结

  • 通过反序列化RDD(不是ShuffleRDD),通过Dependency的列表获的最初获取数据的RDD的迭代器A
  • Map算子对迭代器A重新封装AbstractIterator,在迭代器A获取结果后进行Map算子里的函数调用line => (extractKey(line), extractStats(line)),返回KV的结果
  • reduceByKey算子里的函数传递是通过ShuffledDependency里的aggregator进行传递
  • Executor 只要对迭代器AbstractIterator进行迭代获取KV,调用aggregator里的方法进行相同的K对V进行操作,完成Driver里面的main函数定义的RDD运算。

猜你喜欢

转载自www.cnblogs.com/itboys/p/9213029.html