【数据结构】C语言实现双链表

目录

前言

双链表节点定义

接口函数实现

初始化函数

创建节点

打印双链表

尾插节点

尾删节点

 头插节点

 头删节点

 指定位置前插入

 删除指定位置节点

改写插入删除 

判断链表是否为空

计算链表长度

销毁链表

双链表完整代码

浅谈链表及顺序表


前言

前面我们已经实现了无头单向非循环链表,现在我们来实现带头双向循环链表。

双链表节点定义

//双链表节点定义
typedef int LDataType;
typedef struct ListNode
{
	struct ListNode* prev;
	struct ListNode* next;
	LDataType data;
}LNode;

与单链表不同的是,在实现双链表时,我们需要创建一个初始化函数。双链表的初始化需要一个头节点,并且这个头节点的prev指针和next指针需要指向自身。

接口函数实现

初始化函数

初始化函数创建了一个头节点(哨兵卫),这个哨兵卫不储存值,并且让它的prev、next指向自身。这样就形成了一个闭环。

//初始化双链表
LNode* LInit()
{
	LNode* newnode = (LNode*)malloc(sizeof(LNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}
    //prev与next均指向自身
	newnode->next = newnode;
	newnode->prev = newnode;
	return newnode;
}

 与单链表的实现类似,我们同样也实现两个函数用来检测和辅助其他函数的实现。

创建节点

//创建节点、
LNode* BuyListNode(LDataType x)
{
	LNode* newnode = (LNode*)malloc(sizeof(LNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}
	newnode->data = x;
    //创建后的节点prev与next均指向NULL
	newnode->next = NULL;
	newnode->prev = NULL;
	return newnode;
}

新创建的节点的prev与next指针我们让他们指向NULL就可以了,因为后面我们还会处理它的链接关系,所以指向空指针就可以了。 

打印双链表

//打印双链表
void LPrint(LNode* phead)
{
	assert(phead);
	LNode* cur = phead->next;
	while (cur != phead)
	{
		printf("%d ", cur->data);
		cur = cur->next;
	}
	printf("\n");
}

PS:

        打印链表信息之所以从phead->next开始是因为我们的phead并没有存值,链表的节点信息是从phead->next开始的。

尾插节点

//尾插节点
void LPushBack(LNode* phead,LDataType x)
{
    //防止传入空指针
	assert(phead);
    //先将x存入创建的节点中
	LNode* newnode = BuyListNode(x);
    //链表最后一个节点就是phead的prev指针
	LNode* tail = phead->prev;
    //将newnode节点链接到链表中
	tail->next = newnode;
	phead->prev = newnode;
	newnode->next = phead;
	newnode->prev = tail;
}

        可能会有人会问,为什么双链表在尾插的时候传的参数是一级指针啊?单链表在尾插节点的的时候传的就是二级指针。那是因为我们现在实现的双链表具有头节点(哨兵卫),正是因为有了它,我们就不用传二级指针了。为什么了,前面我们讲过,单链表之所以传入的是二级指针。那是因为在特殊情况下我们的第一个节点会变成空指针。有哨兵卫后就不同了,假如我们现在双链表中只存在一个节点,我们将它删除,只需要将phead的prev与next均指向自身就可以了,而如果没有哨兵卫,我们就要将phead置成空指针,这样传入的参数就改变了,那么就需要传二级指针。

        其实就一点,如果链表有哨兵卫的话就直接传入一级指针就可以了。

尾删节点

//尾删节点
void LPopBack(LNode* phead)
{
	assert(phead);
    //防止传入的链表是一个空链表
	assert(phead->prev != phead);
	LNode* tail = phead->prev;
	LNode* tailPrev = tail->prev;
    //每个节点都是动态开辟出来的,记得释放
	free(tail);
	phead->prev = tailPrev;
	tailPrev->next = phead;
}

 头插节点

//头插节点
void LPushFront(LNode* phead, LDataType x)
{
	assert(phead);
	LNode* newnode = BuyListNode(x);
	LNode* first = phead->next;
	phead->next = newnode;
	first->prev = newnode;
	newnode->prev = phead;
	newnode->next = first;
}

 头删节点

//头删节点
void LPopFront(LNode* phead)
{
	assert(phead);
    //防止链表为空
	assert(phead->next != phead);
	LNode* first = phead->next;
	LNode* newfirst = first->next;

	free(first);
	phead->next = newfirst;
	newfirst->prev = phead;
}

 指定位置前插入

//指定位置前插入
void LInsert(LNode* pos, LDataType x)
{
	assert(pos);
	LNode* newnode = BuyListNode(x);
	LNode* posPrev = pos->prev;
   
	newnode->next = pos;
	pos->prev = newnode;
	posPrev->next = newnode;
	newnode->prev = posPrev;
}

 删除指定位置节点

//删除指定位置节点
void LErase(LNode* pos)
{
	assert(pos);
	LNode* posNext = pos->next;
	LNode* posPrev = pos->prev;
	free(pos);

	posPrev->next = posNext;
	posNext->prev = posPrev;
}

改写插入删除 

有了删除指定位置节点函数和指定位置前插入函数,我们就可以改写尾插尾删、头插头删函数。

//尾插节点
void LPushFront(LNode* phead, LDataType x)
{
	LInsert(phead, x);
}
//尾删节点
void LPopBack(LNode* phead)
{
	LErase(phead->prev);
}
//头插节点
void LPushFront(LNode* phead, LDataType x)
{
	LInsert(phead->next, x);
}
//头删节点
void LPopFront(LNode* phead)
{
	LErase(phead->next);
}

判断链表是否为空

//判断链表是否为空
bool LIsEmpty(LNode* phead)
{
	assert(phead);
	return phead == phead->next;
}

计算链表长度

//计算链表长度
int LSize(LNode* phead)
{
	int count = 0;
	LNode* cur = phead->next;
	while (cur != phead)
	{
		count++;
		cur = cur->next;
	}
	return count;
}

销毁链表

//销毁链表
void LDestroy(LNode* phead)
{
	assert(phead);
	LNode* cur = phead->next;
    //将每个节点都释放
	while (cur != phead)
	{
		LNode* next = cur->next;
		free(cur);
		cur = next;
	}
	//自己手动将phead置为空指针
	free(phead);
}

双链表完整代码

List.h

#pragma once
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <assert.h>
#include <stdbool.h>

typedef int LDataType;
typedef struct ListNode
{
	struct ListNode* prev;
	struct ListNode* next;
	LDataType data;
}LNode;

//初始化双链表
LNode* LInit();

//打印双链表
void LPrint(LNode* phead);

//创建一个节点
LNode* BuyListNode(LDataType x);

//尾插尾删
void LPushBack(LNode* phead, LDataType x);
void LPopBack(LNode* phead);

//头插头删
void LPushFront(LNode* phead, LDataType x);
void LPopFront(LNode* phead);

//在指定位置前插入,删除指定位置
void LErase(LNode* pos);
void LInsert(LNode* pos, LDataType x);

//销毁链表
void LDestroy(LNode* phead);

//判断链表是否为空
bool LIsEmpty(LNode* phead);

//计算链表节点个数
size_t LSize(LNode* phead);

List.c

#include "List.h"


LNode* LInit()
{
	LNode* newnode = (LNode*)malloc(sizeof(LNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}
	newnode->next = newnode;
	newnode->prev = newnode;
	return newnode;
}

LNode* BuyListNode(LDataType x)
{
	LNode* newnode = (LNode*)malloc(sizeof(LNode));
	if (newnode == NULL)
	{
		perror("malloc fail");
		exit(-1);
	}
	newnode->data = x;
	newnode->next = NULL;
	newnode->prev = NULL;
	return newnode;
}

void LPushBack(LNode* phead,LDataType x)
{
	assert(phead);
	LNode* newnode = BuyListNode(x);

	LNode* tail = phead->prev;
	tail->next = newnode;
	phead->prev = newnode;
	newnode->next = phead;
	newnode->prev = tail;

	//LInsert(phead, x);
}

void LPopBack(LNode* phead)
{
	assert(phead);
	assert(phead->prev != phead);
	LNode* tail = phead->prev;
	LNode* tailPrev = tail->prev;

	free(tail);
	phead->prev = tailPrev;
	tailPrev->next = phead;
	//LErase(phead->prev);
}

void LPrint(LNode* phead)
{
	assert(phead);
	LNode* cur = phead->next;
	while (cur != phead)
	{
		printf("%d ", cur->data);
		cur = cur->next;
	}
	printf("\n");
}

void LPushFront(LNode* phead, LDataType x)
{
	assert(phead);
	LNode* newnode = BuyListNode(x);

	LNode* first = phead->next;
	phead->next = newnode;
	first->prev = newnode;
	newnode->prev = phead;
	newnode->next = first;

	//LInsert(phead->next, x);
}

void LPopFront(LNode* phead)
{
	//assert(phead);
	//assert(phead->next != phead);
	//LNode* first = phead->next;
	//LNode* newfirst = first->next;

	//free(first);
	//phead->next = newfirst;
	//newfirst->prev = phead;

	LErase(phead->next);
}

LNode* LFind(LNode* phead, LDataType x)
{
	assert(phead);
	LNode* cur = phead->next;
	while (cur != phead)
	{
		if (cur->data == x)
		{
			return cur;
		}
		cur = cur->next;
	}
	return NULL;
}

void LErase(LNode* pos)
{
	assert(pos);
	LNode* posNext = pos->next;
	LNode* posPrev = pos->prev;
	free(pos);

	posPrev->next = posNext;
	posNext->prev = posPrev;
}

void LInsert(LNode* pos, LDataType x)
{
	assert(pos);
	LNode* newnode = BuyListNode(x);
	LNode* posPrev = pos->prev;

	newnode->next = pos;
	pos->prev = newnode;
	posPrev->next = newnode;
	newnode->prev = posPrev;
}

void LDestroy(LNode* phead)
{
	assert(phead);
	LNode* cur = phead->next;
	while (cur != phead)
	{
		LNode* next = cur->next;
		free(cur);
		cur = next;
	}
	//自己手动置为空指针
	free(phead);
}

bool LIsEmpty(LNode* phead)
{
	assert(phead);
	return phead == phead->next;
}

int LSize(LNode* phead)
{
	int count = 0;
	LNode* cur = phead->next;
	while (cur != phead)
	{
		count++;
		cur = cur->next;
	}
	return count;
}

浅谈链表及顺序表

链表和顺序表都作为线性表,他们之间有何异同呢?如以下表格:

不同点 顺序表 链表
存储空间上 物理上一定连续 逻辑上连续,物理空间上不一定连续
随机访问 支持 O(1) 不支持 O(N)
任意位置插入和删除元素 可能需要搬移元素,效率低;O(N) 只需修改指针指向
插入 动态顺序表,空间不够时需要扩容 没有容量的概念
应用场景 元素高效存储+频繁访问 任意位置插入和删除频繁
缓存利用率

以上就是双链表实现的全部内容了,希望能够帮助到大家。如果有不对的地方请各位大佬在评论区指正(鞠躬)。

猜你喜欢

转载自blog.csdn.net/m0_74459723/article/details/128521866