fpga系列 HDL 00 : 可编程逻辑器件原理

一次性可编程器件(融保险丝实现)

  • 一次性可编程器件(One-Time Programmable Device,简称 OTP)是一种在制造后仅能编程一次的存储设备。OTP器件在编程后数据不可更改。这些器件在很多应用场景中具有独特的优势和用途。

示例

  • MMI 16R6
    在这里插入图片描述

  • 可编程元件(显示为保险丝,下图中的波浪线)将真实输入和补码输入连接到与门。这些与门(也称为乘积项,下图中的面包片)通过“或”(下图中最右侧的圆形三角形)运算在一起,形成乘积和逻辑阵列。
    在这里插入图片描述

类型

  1. PROM (Programmable Read-Only Memory)
    • 熔丝型 PROM:通过熔断内部熔丝来编程。这种方法可以通过高电压来破坏选定熔丝,从而改变存储的数据。
    • 反熔丝型 PROM:使用反熔丝技术,通过特定方法在特定位置创建导电路径。

特性

  1. 不可擦除:OTP器件一旦编程,数据即固定,无法通过任何手段擦除或重新编程。
  2. 高可靠性:由于数据不可更改,OTP器件在安全性和数据保持方面具有很高的可靠性,适用于需要永久保存数据的场合。
  3. 低成本:相比于可擦写的存储器,OTP器件在制造和材料成本上通常较低,适用于大批量生产和一次性应用。

多次擦写的可编程逻辑设备(EPROM)

示例

在这里插入图片描述

+----------------------------------+
|          UVEPROM Chip            |
|                                  |
|  +----------------------------+  |
|  |       Silicon Die          |  |
|  |                            |  |
|  |   +--------------------+   |  |
|  |   | 浮栅 MOSFET        |   |  |
|  |   |  Transistors       |   |  |
|  |   +--------------------+   |  |
|  |                            |  |
|  +----------------------------+  |
|                                  |
|  Transparent Quartz Window       |
+----------------------------------+

原理

  • 编程:
    使用专用编程器将数据写入UVEPROM。在编程过程中,高电压(通常为12.5V至21V)被施加到存储单元以改变浮栅电荷状态,从而存储数据。场效应晶体管的开关状态由晶体管控制栅极上的电压控制。当电压施加到栅极时,晶体管内会形成一条传导路径,从而打开开关。在浮置栅极上存储电荷与向栅极施加电压具有相同的效果,从而允许存储数据。
  • 擦除(紫外线,UV,ultraviolet):
    UVEPROM芯片通常具有一个透明的石英窗,通过这个窗口,可以将芯片暴露在紫外光下。紫外光会提供足够的能量,使浮栅上的电荷逸出,从而将存储单元恢复到未编程状态(通常是逻辑高电平)。通常需要几分钟到二十分钟的紫外光照射才能完成擦除过程。

多次擦写的可编程逻辑设备(EEPROM)

示例

  • electrically erasable programmable read-only memory

原理

  • 编程:编程时,通过施加高电压(通常在12V左右)在控制栅和源极之间,使电子通过隧道效应被注入到浮栅上,从而改变浮栅的电荷状态,这会影响晶体管的阈值电压,从而表示存储的数据位。

  • 擦除:擦除时,通过施加反向高电压,使浮栅上的电荷逸出,恢复到未编程状态。

CPLD(Complex Programmable Logic Device)

示例

在这里插入图片描述

CPLD 的架构

在这里插入图片描述

可编程逻辑块(PLB)

  • 存储配置数据的EEPROM,用于设置逻辑块和互连的功能。

在这里插入图片描述

  • 类PAL块(也称为功能块)通常由16个宏单元组成。每个宏单元由一个与或配置、一个异或门、一个触发器、一个多路复用器和一个三态缓冲器组成。
    在这里插入图片描述

LUT

  • LUT(Lookup Table,查找表)是数字逻辑设计中常用的一种元件,用于实现逻辑功能。它是一种存储了输入输出关系的数据结构,在电路中充当逻辑函数的实现。LUT的工作原理类似于一张查找表,它接收一组输入信号,并根据这组输入信号查找对应的输出信号。在数字逻辑中,这组输入信号可以是逻辑门的输入,而查找表存储了每一种输入组合对应的输出。例如,对于一个二输入的AND门,有四种可能的输入组合:00、01、10、11。每种输入组合对应一个输出,因此可以用一个包含四个条目的查找表来实现AND门的功能。
    在这里插入图片描述
    在这里插入图片描述
  • 在商业FPGA芯片中,LUT通常有4个或5个输入,分别需要16个和32个存储单元。

FPGA

  • PAL通常有额外的电路,包括与或门。FPGA也是如此,除了一个LUT之外,它通常在每个逻辑块中有额外的电路。图b显示了一个触发器是如何被包含在FPGA逻辑块中的,触发器被用来在其时钟输入的控制下存储其D输入的值。

在这里插入图片描述

  • 通过FPGA实现 x 1 x 2 + x 2 ˉ x 3 x_1x_2+\bar{x_2}x_3 x1x2+x2ˉx3

在这里插入图片描述

对比CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)和FPGA(Field-Programmable Gate Array,现场可编程门阵列):

特性 CPLD FPGA
架构 由多个宏单元(Macrocell)组成,通过可编程互连网络连接 由多个可编程逻辑块(PLB)组成,通过复杂的互连矩阵连接
配置存储 EEPROM 或 Flash,断电后保留配置 目前,大多数FPGA芯片是基于 SRAM 的结构的,SRAM,断电后配置丢失,需要外部存储加载
配置时间 配置时间较短 配置时间较长
逻辑容量 适合中小规模逻辑设计,逻辑容量较低 适合大规模、高复杂度逻辑设计,逻辑容量高
功耗 通常较低,适合低功耗应用 相对较高,特别是在实现复杂设计时
时序特性 时序特性稳定确定 灵活,但时序特性可能受复杂互连影响
开发工具 简单,适合快速原型设计 复杂,提供高级特性和调试环境
编程接口 相对简单 复杂,支持高级功能和多种配置方式
典型应用 控制电路、简单状态机、I/O 扩展、接口转换 高性能计算、数字信号处理、实时数据处理、高速通信接口
资源 较少的逻辑单元和寄存器 丰富的逻辑单元、DSP 块、RAM 块
并行处理 限制较多 高度并行处理能力
灵活性 架构固定,灵活性较低 架构灵活,可重配置

CG

猜你喜欢

转载自blog.csdn.net/ResumeProject/article/details/139241028
HDL