算法工程师面试常考手撕题

最近这一两周看到不少互联网公司都已经开始秋招提前批了。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们

技术交流

在这里插入图片描述


算法工程师面试常考手撕题

  • 注意力(Attention)篇

    • 手撕单头注意力机制(ScaledDotProductAttention)函数

    • 手撕多头注意力(MultiHeadAttention)

    • 手撕自注意力机制函数(SelfAttention)

    • GPT2 解码中的KV Cache

    • 手撕 MQA 算法

  • 基础机器学习算法篇

    • 手撕 numpy写线性回归的随机梯度下降(stochastic gradient descent,SGD)

    • 手撕 k-means 算法

    • 手撕 Layer Normalization 算法

    • 手撕 Batch Normalization 算法

  • 解码算法篇

    • 手撕 贪心搜索 (greedy search)

    • 手撕 集束搜索 beamsearch 算法

    • 手撕 温度参数采样(Temperature Sampling)算法

    • 手撕 Top-K Sampling算法

    • 手撕 Top-P (Nucleus) Sampling 算法

  • 神经网络篇

    • 手撕反向传播(backward propagation,BP)法

    • 手撕 卷积神经网络(CNN)法

    • 手撕 循环神经网络(RNN)法

    • 手撕 LSTM法

    • 手撕 二维卷积 算法

  • 位置编码篇

    • 手撕 绝对位置编码 算法

    • 手撕 可学习位置编码 算法

    • 手撕 相对位置编码 算法

    • 手撕 rope 算法

  • 面试题汇总

注意力(Attention)篇

手撕单头注意力机制(ScaledDotProductAttention)函数

输入是query和 key-value,注意力机制首先计算query与每个key的关联性(compatibility),每个关联性作为每个value的权重(weight),各个权重与value的乘积相加得到输出。

图片

class ScaledDotProductAttention(nn.Module):
    """ Scaled Dot-Product Attention """

    def __init__(self, scale):
        super().__init__()

        self.scale = scale
        self.softmax = nn.Softmax(dim=2)

    def forward(self, q, k, v, mask=None):
        u = torch.bmm(q, k.transpose(1, 2)) # 1.Matmul
        u = u / self.scale # 2.Scale

        if mask is not None:
            u = u.masked_fill(mask, -np.inf) # 3.Mask

        attn = self.softmax(u) # 4.Softmax
        output = torch.bmm(attn, v) # 5.Output

        return attn, output


if __name__ == "__main__":
    n_q, n_k, n_v = 2, 4, 4
    d_q, d_k, d_v = 128, 128, 64

    q = torch.randn(batch, n_q, d_q)
    k = torch.randn(batch, n_k, d_k)
    v = torch.randn(batch, n_v, d_v)
    mask = torch.zeros(batch, n_q, n_k).bool()

    attention = ScaledDotProductAttention(scale=np.power(d_k, 0.5))
    attn, output = attention(q, k, v, mask=mask)

    print(attn)
    print(output)

手撕多头注意力(MultiHeadAttention)

class MultiHeadAttention(nn.Module):
    """ Multi-Head Attention """

    def __init__(self, n_head, d_k_, d_v_, d_k, d_v, d_o):
        super().__init__()

        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.fc_q = nn.Linear(d_k_, n_head * d_k)
        self.fc_k = nn.Linear(d_k_, n_head * d_k)
        self.fc_v = nn.Linear(d_v_, n_head * d_v)

        self.attention = ScaledDotProductAttention(scale=np.power(d_k, 0.5))

        self.fc_o = nn.Linear(n_head * d_v, d_o)

    def forward(self, q, k, v, mask=None):

        n_head, d_q, d_k, d_v = self.n_head, self.d_k, self.d_k, self.d_v

        batch, n_q, d_q_ = q.size()
        batch, n_k, d_k_ = k.size()
        batch, n_v, d_v_ = v.size()

        q = self.fc_q(q) # 1.单头变多头
        k = self.fc_k(k)
        v = self.fc_v(v)
        q = q.view(batch, n_q, n_head, d_q).permute(2, 0, 1, 3).contiguous().view(-1, n_q, d_q)
        k = k.view(batch, n_k, n_head, d_k).permute(2, 0, 1, 3).contiguous().view(-1, n_k, d_k)
        v = v.view(batch, n_v, n_head, d_v).permute(2, 0, 1, 3).contiguous().view(-1, n_v, d_v)

        if mask is not None:
            mask = mask.repeat(n_head, 1, 1)
        attn, output = self.attention(q, k, v, mask=mask) # 2.当成单头注意力求输出

        output = output.view(n_head, batch, n_q, d_v).permute(1, 2, 0, 3).contiguous().view(batch, n_q, -1) # 3.Concat
        output = self.fc_o(output) # 4.仿射变换得到最终输出

        return attn, output


if __name__ == "__main__":
    n_q, n_k, n_v = 2, 4, 4
    d_q_, d_k_, d_v_ = 128, 128, 64

    q = torch.randn(batch, n_q, d_q_)
    k = torch.randn(batch, n_k, d_k_)
    v = torch.randn(batch, n_v, d_v_)    
    mask = torch.zeros(batch, n_q, n_k).bool()

    mha = MultiHeadAttention(n_head=8, d_k_=128, d_v_=64, d_k=256, d_v=128, d_o=128)
    attn, output = mha(q, k, v, mask=mask)

    print(attn.size())
    print(output.size())

手撕自注意力机制函数(SelfAttention)

Self-Attention。和Attention类似,他们都是一种注意力机制。不同的是Attention是source对target,输入的source和输出的target内容不同。例如英译中,输入英文,输出中文。而Self-Attention是source对source,是source内部元素之间或者target内部元素之间发生的Attention机制,也可以理解为Target=Source这种特殊情况下的注意力机制。

class SelfAttention(nn.Module):
    """ Self-Attention """

    def __init__(self, n_head, d_k, d_v, d_x, d_o):
        self.wq = nn.Parameter(torch.Tensor(d_x, d_k))
        self.wk = nn.Parameter(torch.Tensor(d_x, d_k))
        self.wv = nn.Parameter(torch.Tensor(d_x, d_v))

        self.mha = MultiHeadAttention(n_head=n_head, d_k_=d_k, d_v_=d_v, d_k=d_k, d_v=d_v, d_o=d_o)

        self.init_parameters()

    def init_parameters(self):
        for param in self.parameters():
            stdv = 1. / np.power(param.size(-1), 0.5)
            param.data.uniform_(-stdv, stdv)

    def forward(self, x, mask=None):
        q = torch.matmul(x, self.wq)   
        k = torch.matmul(x, self.wk)
        v = torch.matmul(x, self.wv)

        attn, output = self.mha(q, k, v, mask=mask)

        return attn, output


if __name__ == "__main__":
    n_x = 4
    d_x = 80

    x = torch.randn(batch, n_x, d_x)
    mask = torch.zeros(batch, n_x, n_x).bool()

    selfattn = SelfAttention(n_head=8, d_k=128, d_v=64, d_x=80, d_o=80)
    attn, output = selfattn(x, mask=mask)

    print(attn.size())
    print(output.size())

GPT2 解码中的KV Cache

无论是encoder-decoder结构,还是现在我们最接近AGI的decoder-only的LLM,解码生成时都是自回归auto-regressive的方式。

也就是,解码的时候,先根据当前输入 ,生成下一个 ,然后把新生成的 拼接在 后面,获得新的输入 ,再用 生成 ,依此迭代,直到生成结束。

我们可以注意到,下一个step的输入其实包含了上一个step的内容,而且只在最后面多了一点点(一个token)。那么下一个step的计算应该也包含了上一个step的计算。

但是模型在推理的时候可不管这些,无论你是不是只要最后一个字的输出,它都把所有输入计算一遍,给出所有输出结果。

也就是说中间有很多我们用不到的计算,这样就造成了浪费。

而且随着生成的结果越来越多,输入的长度也越来越长,上面这个例子里,输入长度就从step0的10个,每步增长1,直到step5的15个。如果输入的instruction是让模型写作文,那可能就有800个step。这个情况下,step0被算了800次,step1被算了799次…这样浪费的计算资源确实不容忽视。

有没有什么办法可以重复利用上一个step里已经计算过的结果,减少浪费呢?

答案就是KV Cache,利用一个缓存,把需要重复利用的中间计算结果存下来,减少重复计算。

而 k 和 v 就是我要缓存的对象。

因为第l层的 o0、o1、o2本来会经过FNN层之后进到 l十1 层,再经过新的投影变换,成为 l + 1 层的 k、υ 值,但是l十 1 层的 k、

这样就节省了attention和FFN的很多重复计算。

transformers中,生成的时候传入use_cache=True就会开启KV Cache。

也可以简单看下GPT2中的实现,中文注释的部分就是使用缓存结果和更新缓存结果

Class GPT2Attention(nn.Module):
    ...
    ...
    def forward(
        self,
        hidden_states: Optional[Tuple[torch.FloatTensor]],
        layer_past: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
        if encoder_hidden_states is not None:
            if not hasattr(self, "q_attn"):
                raise ValueError(
                    "If class is used as cross attention, the weights `q_attn` have to be defined. "
                    "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
                )

            query = self.q_attn(hidden_states)
            key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
            attention_mask = encoder_attention_mask
        else:
            query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)

        query = self._split_heads(query, self.num_heads, self.head_dim)
        key = self._split_heads(key, self.num_heads, self.head_dim)
        value = self._split_heads(value, self.num_heads, self.head_dim)

        # 过去所存的值
        if layer_past is not None:
            past_key, past_value = layer_past
            key = torch.cat((past_key, key), dim=-2)  # 把当前新的key加入
            value = torch.cat((past_value, value), dim=-2)  # 把当前新的value加入

        if use_cache is True:
            present = (key, value)  # 输出用于保存
        else:
            present = None

        if self.reorder_and_upcast_attn:
            attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
        else:
            attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)

        attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
        attn_output = self.c_proj(attn_output)
        attn_output = self.resid_dropout(attn_output)

        outputs = (attn_output, present)
        if output_attentions:
            outputs += (attn_weights,)

        return outputs  # a, present, (attentions)

总的来说,KV Cache是以空间换时间的做法,通过使用快速的缓存存取,减少了重复计算。(注意,只有decoder结构的模型可用,因为有mask attention的存在,使得前面的token可以不用关注后面的token)

手撕 MQA 算法

MQA 让所有的头之间 共享 同一份 Key 和 Value 矩阵,每个头只单独保留了一份 Query 参数,从而大大减少 Key 和 Value 矩阵的参数量。

class MultiQueryAttention(nn.Module):
    """Multi-Query self attention.

    Using torch or triton attention implemetation enables user to also use
    additive bias.
    """

    def __init__(
        self,
        d_model: int,
        n_heads: int,
        attn_impl: str = 'triton',
        clip_qkv: Optional[float] = None,
        qk_ln: bool = False,
        softmax_scale: Optional[float] = None,
        attn_pdrop: float = 0.0,
        low_precision_layernorm: bool = False,
        verbose: int = 0,
        device: Optional[str] = None,
    ):
        super().__init__()

        self.attn_impl = attn_impl
        self.clip_qkv = clip_qkv
        self.qk_ln = qk_ln

        self.d_model = d_model
        self.n_heads = n_heads
        self.head_dim = d_model // n_heads
        self.softmax_scale = softmax_scale
        if self.softmax_scale is None:
            self.softmax_scale = 1 / math.sqrt(self.head_dim)
        self.attn_dropout_p = attn_pdrop

        self.Wqkv = nn.Linear(
            d_model,
            d_model + 2 * self.head_dim,
            device=device,
        )

        fuse_splits = (d_model, d_model + self.head_dim)
        self.Wqkv._fused = (0, fuse_splits)  # type: ignore

        self.attn_fn = scaled_multihead_dot_product_attention
        self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
        self.out_proj._is_residual = True  # type: ignore

    def forward(
        self,
        x,
        past_key_value=None,
        attn_bias=None,
        attention_mask=None,
        is_causal=True,
        needs_weights=False,
    ):
        qkv = self.Wqkv(x)                                      # (1, 512, 960)

        if self.clip_qkv:
            qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)

        query, key, value = qkv.split(                                  # query -> (1, 512, 768)
            [self.d_model, self.head_dim, self.head_dim],               # key   -> (1, 512, 96)
            dim=2                                                       # value -> (1, 512, 96)
        )

        key_padding_mask = attention_mask

        if self.qk_ln:
            # Applying layernorm to qk
            dtype = query.dtype
            query = self.q_ln(query).to(dtype)
            key = self.k_ln(key).to(dtype)

        context, attn_weights, past_key_value = self.attn_fn(
            query,
            key,
            value,
            self.n_heads,
            past_key_value=past_key_value,
            softmax_scale=self.softmax_scale,
            attn_bias=attn_bias,
            key_padding_mask=key_padding_mask,
            is_causal=is_causal,
            dropout_p=self.attn_dropout_p,
            training=self.training,
            needs_weights=needs_weights,
            multiquery=True,
        )

        return self.out_proj(context), attn_weights, past_key_value

基础机器学习算法篇

手撕 numpy写线性回归的随机梯度下降(stochastic gradient descent,SGD)

在每次更新时用1个样本,可以看到多了随机两个字,随机也就是说我们用样本中的一个例子来近似我所有的样本,来调整θ,因而随机梯度下降是会带来一定的问题,因为计算得到的并不是准确的一个梯度,对于最优化问题,凸问题,虽然不是每次迭代得到的损失函数都向着全局最优方向, 但是大的整体的方向是向全局最优解的,最终的结果往往是在全局最优解附近。

# 数据加载
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split

X, Y = fetch_california_housing(return_X_y=True)
X.shape, Y.shape  # (20640, 8), (20640, )

# 数据预处理
ones = np.ones(shape=(X.shape[0], 1))
X = np.hstack([X, ones])
validate_size = 0.2
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=validate_size, shuffle=True)

# batch 函数
def get_batch(batchsize: int, X: np.ndarray, Y: np.ndarray):
    assert 0 == X.shape[0]%batchsize, f'{
      
      X.shape[0]}%{
      
      batchsize} != 0'
    batchnum = X.shape[0]//batchsize
    X_new = X.reshape((batchnum, batchsize, X.shape[1]))
    Y_new = Y.reshape((batchnum, batchsize, ))

    for i in range(batchnum):
        yield X_new[i, :, :], Y_new[i, :]

# 损失函数
def mse(X: np.ndarray, Y: np.ndarray, W: np.ndarray):
    return 0.5 * np.mean(np.square(X@W-Y))

def diff_mse(X: np.ndarray, Y: np.ndarray, W: np.ndarray):
    return X.T@(X@W-Y) / X.shape[0]

# 模型训练
lr = 0.001          # 学习率
num_epochs = 1000   # 训练周期
batch_size = 64     # |每个batch包含的样本数
validate_every = 4  # 多少个周期进行一次检验
def train(num_epochs: int, batch_size: int, validate_every: int, W0: np.ndarray, X_train: np.ndarray, Y_train: np.ndarray, X_test: np.ndarray, Y_test: np.ndarray):
    loop = tqdm(range(num_epochs))
    loss_train = []
    loss_validate = []
    W = W0
    # 遍历epoch
    for epoch in loop:
        loss_train_epoch = 0
        # 遍历batch
        for x_batch, y_batch in get_batch(64, X_train, Y_train):
            loss_batch = mse(X=x_batch, Y=y_batch, W=W)
            loss_train_epoch += loss_batch*x_batch.shape[0]/X_train.shape[0]
            grad = diff_mse(X=x_batch, Y=y_batch, W=W)
            W = W - lr*grad

        loss_train.append(loss_train_epoch)
        loop.set_description(f'Epoch: {
      
      epoch}, loss: {
      
      loss_train_epoch}')

        if 0 == epoch%validate_every:
            loss_validate_epoch = mse(X=X_test, Y=Y_test, W=W)
            loss_validate.append(loss_validate_epoch)
            print('============Validate=============')
            print(f'Epoch: {
      
      epoch}, train loss: {
      
      loss_train_epoch}, val loss: {
      
      loss_validate_epoch}')
            print('================================')
    plot_loss(np.array(loss_train), np.array(loss_validate), validate_every)

# 程序运行
W0 = np.random.random(size=(X.shape[1], ))  # 初始权重
train(num_epochs=num_epochs, batch_size=batch_size, validate_every=validate_every, W0=W0, X_train=X_train, Y_train=Y_train, X_test=X_test, Y_test=Y_test)

猜你喜欢

转载自blog.csdn.net/2401_84033492/article/details/142422288