1.json数据集转coco格式
我们一般使用如labelme标注软件对数据集进行标注,保存为json文件。但这里的mask2former只支持固定数据格式,我们转为通用性很高的coco格式。通过拉取代码文件。
git clone https://gitcode.com/fcakyon/labelme2coco.git
cd labelme2coco-master
python setup.py install
注意image要和json放在同一文件夹下:
使用如下代码,将标注的json文件转成coco格式的json。
import os
import json
import PIL.Image
import PIL.ImageDraw
import numpy as np
from labelme2coco.utils import create_dir, list_jsons_recursively
from labelme2coco.image_utils import read_image_shape_as_dict
class labelme2coco(object):
def __init__(self, labelme_folder='', save_json_path='./new.json'):
"""
Args:
labelme_folder: folder that contains labelme annotations and image files
save_json_path: path for coco json to be saved
"""
self.save_json_path = save_json_path
self.images = []
self.categories = []
self.annotations = []
self.label = []
self.annID = 1
self.height = 0
self.width = 0
# create save dir
save_json_dir = os.path.dirname(save_json_path)
create_dir(save_json_dir)
# get json list
_, labelme_json = list_jsons_recursively(labelme_folder)
self.labelme_json = labelme_json
self.save_json()
def data_transfer(self):
for num, json_path in enumerate(self.labelme_json):
with open(json_path, 'r') as fp:
# load json
data = json.load(fp)
# (prefix, res) = os.path.split(json_path)
# (file_name, extension) = os.path.splitext(res)
self.images.append(self.image(data, num, json_path))
for shapes in data['shapes']:
label = shapes['label']
if label not in self.label:
self.categories.append(self.category(label))
self.label.append(label)
points = shapes['points']
self.annotations.append(self.annotation(points, label, num))
self.annID += 1
def image(self, data, num, json_path):
image = {
}
# get image path
_, img_extension = os.path.splitext(data["imagePath"])
image_path = json_path.replace(".json", img_extension)
img_shape = read_image_shape_as_dict(image_path)
height, width = img_shape['height'], img_shape['width']
image['height'] = height
image['width'] = width
image['id'] = int(num + 1)
image['file_name'] = image_path
self.height = height
self.width = width
return image
def category(self, label):
category = {
}
category['supercategory'] = label
category['id'] = int(len(self.label) + 1)
category['name'] = label
return category
def annotation(self, points, label, num):
annotation = {
}
annotation['iscrowd'] = 0
annotation['image_id'] = int(num + 1)
annotation['bbox'] = list(map(float, self.getbbox(points)))
# coarsely from bbox to segmentation
x = annotation['bbox'][0]
y = annotation['bbox'][1]
w = annotation['bbox'][2]
h = annotation['bbox'][3]
annotation['segmentation'] = [np.asarray(points).flatten().tolist()]
annotation['category_id'] = self.getcatid(label)
annotation['id'] = int(self.annID)
# add area info
annotation['area'] = self.height * self.width # the area is not used for detection
return annotation
def getcatid(self, label):
for categorie in self.categories:
if label == categorie['name']:
return categorie['id']
# if label[1]==categorie['name']:
# return categorie['id']
return -1
def getbbox(self, points):
# img = np.zeros([self.height,self.width],np.uint8)
# cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA)
# cv2.fillPoly(img, [np.asarray(points)], 1)
polygons = points
mask = self.polygons_to_mask([self.height, self.width], polygons)
return self.mask2box(mask)
def mask2box(self, mask):
# np.where(mask==1)
index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]
left_top_r = np.min(rows) # y
left_top_c = np.min(clos) # x
right_bottom_r = np.max(rows)
right_bottom_c = np.max(clos)
return [left_top_c, left_top_r, right_bottom_c-left_top_c, right_bottom_r-left_top_r] # [x1,y1,w,h] for coco box format
def polygons_to_mask(self, img_shape, polygons):
mask = np.zeros(img_shape, dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
xy = list(map(tuple, polygons))
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def data2coco(self):
data_coco = {
}
data_coco['images'] = self.images
data_coco['categories'] = self.categories
data_coco['annotations'] = self.annotations
return data_coco
def save_json(self):
self.data_transfer()
self.data_coco = self.data2coco()
json.dump(self.data_coco, open(self.save_json_path, 'w', encoding='utf-8'), indent=4, separators=(',', ': '), cls=MyEncoder)
# type check when save json files
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(MyEncoder, self).default(obj)
if __name__ == "__main__":
#labelme_folder 你的标注图片和标签所在的文件夹
labelme_folder = r"D:\jiedan\tool_data\hh\val"
#save_json_path 转换生成的coco格式的标签文件的保存路径
save_json_path = r"D:\jiedan\tool_data\hh\val_coco_format.json"
labelme2coco(labelme_folder, save_json_path)
#下面是可视化标注的mask
# import os
#
# from pycocotools.coco import COCO
# from skimage import io
# from matplotlib import pyplot as plt
#
# json_file = r'D:\jiedan\dataset\label\train_coco_format.json' # 输入文件路径
# dataset_dir = r''
# coco = COCO(json_file)
# catIds = coco.getCatIds(catNms=['head']) # 标注的图片的不同类型别,超过一类,用逗号隔开
# imgIds = coco.getImgIds(catIds=catIds) # 图片id,许多值
# for i in range(len(imgIds)):
# img = coco.loadImgs(imgIds[i])[0]
# I = io.imread(dataset_dir + img['file_name'])
# plt.axis('off')
# plt.imshow(I) # 绘制图像,显示交给plt.show()处理
# annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None)
# anns = coco.loadAnns(annIds)
# coco.showAnns(anns)
# plt.show() # 显示图像
#
#
2.注册mask2former自定数据集
转换好的数据集存放位置如下:
train和val文件夹存放划分好的数据集图片,两个json文件对应于生成的json转好的coco格式。
我们在主函数中进行数据集注册:
// 第1个参数为自定义数据集名称
//第2个参数为json文件的相对路径
//第3个参数为图片数据集文件的相对路径
from detectron2.data.datasets import register_coco_instances
register_coco_instances("my_dataset_train", {
}, "tool_data/train_coco_format.json", "tool_data/train")
register_coco_instances("my_dataset_val", {
}, "tool_data/val_coco_format.json", "tool_data/val")
3.更改配置文件
我们是使用的coco格式的数据集进行训练,所以找到配置文件中的coco文件
首先我们对基础base配置文件进行更改,将train和test数据集换成我们刚在在主函数中注册的数据集名称。
接下来,比如我们使用maskformer2_R50_bs16_50ep.yaml模型文件,则进行相应的类别数进行修改。
最后就可以训练自己的数据集啦!(ps:模型的权重去model ZOO中进行下载即可!)
python train_net.py --num-gpus 1 --config-file configs/coco/instance-segmentation/maskformer2_R50_bs16_50ep.yaml MODEL.WEIGHTS "weights/model_final_94dc52.pkl"
4.小工具
最后再附上一个通过标注的json文件转成mask的代码:
import os
import json
import base64
import imgviz
import PIL.Image
import os.path as osp
from tqdm import tqdm
from labelme import utils
from threading import Thread
'''这个是根据labelme标注的json文件生成mask'''
def ConvertOne(labelme_dir, json_file, save_dir, label_name_to_value):
out_dir = os.path.join(save_dir, json_file.replace(".json", ""))
if not os.path.exists(out_dir):
os.makedirs(out_dir)
json_path = osp.join(labelme_dir, json_file)
with open(json_path, "r") as jf:
data = json.load(jf)
imageData = data.get("imageData")
# labelme 的图像数据编码以及返回处理格式
if not imageData:
imagePath = os.path.join(os.path.dirname(json_file), data["imagePath"])
with open(imagePath, "rb") as f:
imageData = f.read()
imageData = base64.b64encode(imageData).decode("utf-8")
img = utils.img_b64_to_arr(imageData)
lbl, _ = utils.shapes_to_label(
img.shape, data["shapes"], label_name_to_value
)
label_names = [None] * (max(label_name_to_value.values()) + 1)
for name, value in label_name_to_value.items():
label_names[value] = name
# label_names={
'_background_','line','border'}
lbl_viz = imgviz.label2rgb(
lbl, imgviz.asgray(img), label_names=label_names, loc="rb"
)
PIL.Image.fromarray(img).save(osp.join(out_dir, "img.png"))
# 保存标签图片
utils.lblsave(osp.join(out_dir, "label.png"), lbl)
# utils.lblsave((out_dir + ".png"), lbl)
# 保存带标签的可视化图像
PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, "label_viz.png"))
with open(osp.join(out_dir, "label_names.txt"), "w") as f:
for lbl_name in label_names:
f.write(lbl_name + "\n")
def main():
labelme_dir = r'D:\jiedan\tool_data\data_annotation' # json文件存放文件夹
save_dir = r'D:\jiedan\tool_data\output' # 结果生成文件夹
# 类别标签
class_names = {
'_background_': 0,
"tool 1": 1,
"tool 2": 2,
"tool 3": 3,
"tool 4": 4,
"tool 5": 5,
"tool 6": 6,
"tool 7": 7,
"tool 8": 8,
}
# 列出labelme勾画标签后文件夹中保存的所有文件名
file_list = os.listdir(labelme_dir)
# 找到勾画保存的所有json标签
json_list = []
[json_list.append(x) for x in file_list if x.endswith(".json")]
for json_file in tqdm(json_list):
# 单线程
ConvertOne(labelme_dir, json_file, save_dir, class_names)
# 多线程
# Thread(target=ConvertOne, args=(labelme_dir, json_file, save_dir, class_names)).start()
print(f"生成结果保存地址:{save_dir}")
if __name__ == "__main__":
main()
生成结果为: