APS开源源码解读: 排程工具 optaplanner

抽象层次非常好,广义优化工具。用于排产没有复杂的落地示例
move 真实的规划变量 -> trigger shadowvariable更新 -> StartTimeListener

  • https://github.com/apache/incubator-kie-optaplanner/blob/main/optaplanner-examples/src/main/java/org/optaplanner/examples/projectjobscheduling/app/ProjectJobSchedulingApp.java
  • https://github.com/eugenp/tutorials/tree/master/timefold-solver
  • https://github.com/kisszhu/aps

安装

配置

在这里插入图片描述

  • xml配置
  • solutionClass
  • entityClass
  • constraintProviderClass
  • termination: 5min
  • constructionHeuristic: FIRST_FIT
  • localSearch:

也即是说,先定义对象“entityClass”, 转化为约束“constraintProviderClass”,然后运用 constructionHeuristic + localSearch的方式进行求解

其中,一个整体的任务叫做project, 资源有可再生,非可再生。

工序叫做Job,job跟着若干project。每个工序有自己的资源,ResourceRequirement. 执行模式Execution Mode. 分配allocation.

  • resourceRequirement和allocation都要设置execution mode
  • 每个工序JOb, 有自己的resourceRequirement, executation mode, allocation

最好先跑一个实例中的quick-start: https://docs.timefold.ai/timefold-solver/latest/quickstart/hello-world/hello-world-quickstart

基本概念

  • 最简单的宏观视角来说,构建一个solver = solverFactory.buildSolver(),构建一个问题建模solution=new PlanningSolution(machines, tasks),solver.solve(solution)即可.
  • 其中PlanningEntity, 约束位于solution之中; Planning Variable (可设置变化范围)位于PlanningEntity中,由于一些联动的关系,可以设置影子变量ShadowVariable,一个entity的变量改变了,其影子变量也跟着改变,例如下一道工序的开始时间;如果是双向的,及两个变量任意个发生变化,另一个都跟着变化,则设置为InverseRelationShadowVariable
    计划相关:https://docs.timefold.ai/timefold-solver/latest/responding-to-change/responding-to-change#continuousPlanning
  • PlanningSolution
    • 定义Problem,以及解
  • planning entity
    • Allocation
  • planing variable
    • executionMode
    • delay
  • shadow variable
    • predecessorsDoneDate
    • https://www.optaplanner.org/docs/optaplanner/latest/shadow-variable/shadow-variable.html
    • ShadowVariable和VariableListener之间的关系紧密相关
  • planning score
  • 核心的优化算法

其他任务的domain 模型对如何建模比较重要
在这里插入图片描述

Java基本概念

  • 反射就是Java可以给我们在运行时获取类的信息,例如在类上加上@Component注解,Spring就帮你创建对象

建模

建模非常关键,也就是想清楚一个计划或分配问题,真正分配的是什么,或者计划过程中,真正变化的什么。很多只是变化引起的

优化过程中,交换的是什么?

课程表

安排课程,也就是将时间和教室分配给课程

拿quick-start中的课程表为例,分配的资源是教室和时间,其中的约束为

  • A room can have at most one lesson at the same time.
  • A teacher can teach at most one lesson at the same time.
  • A student can attend at most one lesson at the same time.
  • A teacher prefers to teach all lessons in the same room.
  • A teacher prefers to teach sequential lessons and dislikes gaps between lessons.
  • A student dislikes sequential lessons on the same subject.

在这里插入图片描述

  • 其中的planningvariable应该是多对一的,多个planning variable对应到一个其他entity,而不是一个planning variable对应到多个entity。使用到该planning variable的其他entity,是1,可以直接对应到多个planning entity中的planning variable。

车辆规划

每一辆车分给一个任务队列,依次去这些地方
在这里插入图片描述
在这里插入图片描述

排产-Project Job Scheduling

排产也就是把任务分配给资源和时间.

官方实例中分配资源也就是选择execution mode,目标是减少project delay. 其中真正分配和变化的是execution mode. 也就是选择不同的资源

排产-TaskAssigning

约束

比如排产中的工序依赖关系

import org.timefold.solver.core.api.score.buildin.hardsoft.HardSoftScore;
import org.timefold.solver.core.api.score.stream.ConstraintProvider;
import org.timefold.solver.core.api.score.stream.Constraint;
import org.timefold.solver.core.api.score.stream.ConstraintStream;
import org.timefold.solver.core.api.score.stream.Joiners;

public class JobShopConstraintProvider implements ConstraintProvider {

    @Override
    public Constraint[] defineConstraints(ConstraintFactory constraintFactory) {
        return new Constraint[] {
            // Ensure operations follow the sequence within each job
            constraintFactory.from(Operation.class)
                .join(Operation.class, Joiners.filteringEach(otherOp -> 
                    otherOp.getJob().equals(op.getJob()) && 
                    otherOp.getSequence() == op.getSequence() + 1
                ))
                .penalize("Operations must follow sequence",
                    HardSoftScore.ONE_HARD,
                    (op, otherOp) -> 1),
            
            // Ensure machine constraints are respected
            constraintFactory.from(Operation.class)
                .join(Operation.class, Joiners.filteringEach((op1, op2) ->
                    op1.getMachine().equals(op2.getMachine()) &&
                    op1.getEndTime() > op2.getStartTime() &&
                    op1.getStartTime() < op2.getEndTime() &&
                    !op1.equals(op2))
                )
                .penalize("Machine cannot process two operations at once",
                    HardSoftScore.ONE_HARD,
                    (op1, op2) -> 1)
        };
    }
}

官方示例

入口在APP的main

public static void main(String[] args) {
        prepareSwingEnvironment();
        new ProjectJobSchedulingApp().init();
    }

init

public void init() {
        init(null, true);
    }

    public void init(Component centerForComponent, boolean exitOnClose) {
        solutionBusiness = createSolutionBusiness();
        solverAndPersistenceFrame = new SolverAndPersistenceFrame<>(solutionBusiness, createSolutionPanel(),
                createExtraActions());
        solverAndPersistenceFrame
                .setDefaultCloseOperation(exitOnClose ? WindowConstants.EXIT_ON_CLOSE : WindowConstants.DISPOSE_ON_CLOSE);
        solverAndPersistenceFrame.init(centerForComponent);
        solverAndPersistenceFrame.setVisible(true);
    }

其中,solution business
- SolverFactory.createFromXmlResource建立了solver

public SolutionBusiness<Solution_, ?> createSolutionBusiness() {
        SolutionBusiness<Solution_, ?> solutionBusiness = new SolutionBusiness<>(this,
                SolverFactory.createFromXmlResource(solverConfigResource));
        solutionBusiness.setDataDir(determineDataDir(dataDirName));
        solutionBusiness.setSolutionFileIO(createSolutionFileIO());
        solutionBusiness.setImporters(createSolutionImporters());
        solutionBusiness.setExporters(createSolutionExporters());
        solutionBusiness.updateDataDirs();
        return solutionBusiness;
    }

在APP类继承的solution中,示例采用的是schedule,也就是planningsolution,作为问题和排产结果

package org.optaplanner.examples.projectjobscheduling.domain;

import java.util.List;

import org.optaplanner.core.api.domain.solution.PlanningEntityCollectionProperty;
import org.optaplanner.core.api.domain.solution.PlanningScore;
import org.optaplanner.core.api.domain.solution.PlanningSolution;
import org.optaplanner.core.api.domain.solution.ProblemFactCollectionProperty;
import org.optaplanner.core.api.score.buildin.hardmediumsoft.HardMediumSoftScore;
import org.optaplanner.examples.common.domain.AbstractPersistable;
import org.optaplanner.examples.projectjobscheduling.domain.resource.Resource;

@PlanningSolution
public class Schedule extends AbstractPersistable {

    private List<Project> projectList;
    private List<Job> jobList;
    private List<ExecutionMode> executionModeList;
    private List<Resource> resourceList;
    private List<ResourceRequirement> resourceRequirementList;

    private List<Allocation> allocationList;

    private HardMediumSoftScore score;

    public Schedule() {
    }

    public Schedule(long id) {
        super(id);
    }

    @ProblemFactCollectionProperty
    public List<Project> getProjectList() {
        return projectList;
    }

    public void setProjectList(List<Project> projectList) {
        this.projectList = projectList;
    }

    @ProblemFactCollectionProperty
    public List<Job> getJobList() {
        return jobList;
    }

    public void setJobList(List<Job> jobList) {
        this.jobList = jobList;
    }

    @ProblemFactCollectionProperty
    public List<ExecutionMode> getExecutionModeList() {
        return executionModeList;
    }

    public void setExecutionModeList(List<ExecutionMode> executionModeList) {
        this.executionModeList = executionModeList;
    }

    @ProblemFactCollectionProperty
    public List<Resource> getResourceList() {
        return resourceList;
    }

    public void setResourceList(List<Resource> resourceList) {
        this.resourceList = resourceList;
    }

    @ProblemFactCollectionProperty
    public List<ResourceRequirement> getResourceRequirementList() {
        return resourceRequirementList;
    }

    public void setResourceRequirementList(List<ResourceRequirement> resourceRequirementList) {
        this.resourceRequirementList = resourceRequirementList;
    }

    @PlanningEntityCollectionProperty
    public List<Allocation> getAllocationList() {
        return allocationList;
    }

    public void setAllocationList(List<Allocation> allocationList) {
        this.allocationList = allocationList;
    }

    @PlanningScore
    public HardMediumSoftScore getScore() {
        return score;
    }

    public void setScore(HardMediumSoftScore score) {
        this.score = score;
    }

    // ************************************************************************
    // Complex methods
    // ************************************************************************

}

Timefold 示例

Solver job接受到problem,开始run

@Deprecated(forRemoval = true, since = "1.6.0")
    default SolverJob<Solution_, ProblemId_> solve(ProblemId_ problemId,
            Solution_ problem, Consumer<? super Solution_> finalBestSolutionConsumer,
            BiConsumer<? super ProblemId_, ? super Throwable> exceptionHandler) {
        SolverJobBuilder<Solution_, ProblemId_> builder = solveBuilder()
                .withProblemId(problemId)
                .withProblem(problem);
        if (finalBestSolutionConsumer != null) {
            builder.withFinalBestSolutionConsumer(finalBestSolutionConsumer);
        }
        if (exceptionHandler != null) {
            builder.withExceptionHandler(exceptionHandler);
        }
        return builder.run();
    }
solverStatus = SolverStatus.SOLVING_ACTIVE;
            // Create the consumer thread pool only when this solver job is active.
            consumerSupport = new ConsumerSupport<>(getProblemId(), bestSolutionConsumer, finalBestSolutionConsumer,
                    firstInitializedSolutionConsumer, exceptionHandler, bestSolutionHolder);

            Solution_ problem = problemFinder.apply(problemId);
            // add a phase lifecycle listener that unlock the solver status lock when solving started
            solver.addPhaseLifecycleListener(new UnlockLockPhaseLifecycleListener());
            // add a phase lifecycle listener that consumes the first initialized solution
            solver.addPhaseLifecycleListener(new FirstInitializedSolutionPhaseLifecycleListener(consumerSupport));
            solver.addEventListener(this::onBestSolutionChangedEvent);
            final Solution_ finalBestSolution = solver.solve(problem);
            consumerSupport.consumeFinalBestSolution(finalBestSolution);
            return finalBestSolution;

理解

在这里插入图片描述

  • https://www.optaplanner.org/docs/optaplanner/latest/shadow-variable/shadow-variable.html

  • build_solver/ default_solver_factory

    public Solver<Solution_> buildSolver(SolverConfigOverride<Solution_> configOverride) {
        Objects.requireNonNull(configOverride, "Invalid configOverride (null) given to SolverFactory.");
        var isDaemon = Objects.requireNonNullElse(solverConfig.getDaemon(), false);

        var solverScope = new SolverScope<Solution_>();
        var monitoringConfig = solverConfig.determineMetricConfig();
        solverScope.setMonitoringTags(Tags.empty());
        var metricsRequiringConstraintMatchSet = Collections.<SolverMetric> emptyList();
        if (!monitoringConfig.getSolverMetricList().isEmpty()) {
            solverScope.setSolverMetricSet(EnumSet.copyOf(monitoringConfig.getSolverMetricList()));
            metricsRequiringConstraintMatchSet = solverScope.getSolverMetricSet().stream()
                    .filter(SolverMetric::isMetricConstraintMatchBased)
                    .filter(solverScope::isMetricEnabled)
                    .toList();
        } else {
            solverScope.setSolverMetricSet(EnumSet.noneOf(SolverMetric.class));
        }

        var environmentMode = solverConfig.determineEnvironmentMode();
        var constraintMatchEnabled = !metricsRequiringConstraintMatchSet.isEmpty() || environmentMode.isAsserted();
        if (constraintMatchEnabled && !environmentMode.isAsserted()) {
            LOGGER.info(
                    "Enabling constraint matching as required by the enabled metrics ({}). This will impact solver performance.",
                    metricsRequiringConstraintMatchSet);
        }

        var innerScoreDirector = scoreDirectorFactory.buildScoreDirector(true, constraintMatchEnabled);
        solverScope.setScoreDirector(innerScoreDirector);
        solverScope.setProblemChangeDirector(new DefaultProblemChangeDirector<>(innerScoreDirector));

        var moveThreadCount = resolveMoveThreadCount(true);
        var bestSolutionRecaller = BestSolutionRecallerFactory.create().<Solution_> buildBestSolutionRecaller(environmentMode);
        var randomFactory = buildRandomFactory(environmentMode);

        var configPolicy = new HeuristicConfigPolicy.Builder<>(
                environmentMode,
                moveThreadCount,
                solverConfig.getMoveThreadBufferSize(),
                solverConfig.getThreadFactoryClass(),
                solverConfig.getNearbyDistanceMeterClass(),
                randomFactory.createRandom(),
                scoreDirectorFactory.getInitializingScoreTrend(),
                solutionDescriptor,
                ClassInstanceCache.create()).build();
        var basicPlumbingTermination = new BasicPlumbingTermination<Solution_>(isDaemon);
        var termination = buildTerminationConfig(basicPlumbingTermination, configPolicy, configOverride);
        var phaseList = buildPhaseList(configPolicy, bestSolutionRecaller, termination);

        return new DefaultSolver<>(environmentMode, randomFactory, bestSolutionRecaller, basicPlumbingTermination,
                termination, phaseList, solverScope,
                moveThreadCount == null ? SolverConfig.MOVE_THREAD_COUNT_NONE : Integer.toString(moveThreadCount));
    }

solver的主流程

@Override
    public final Solution_ solve(Solution_ problem) {
        if (problem == null) {
            throw new IllegalArgumentException("The problem (" + problem + ") must not be null.");
        }

        // No tags for these metrics; they are global
        LongTaskTimer solveLengthTimer = Metrics.more().longTaskTimer(SolverMetric.SOLVE_DURATION.getMeterId());
        Counter errorCounter = Metrics.counter(SolverMetric.ERROR_COUNT.getMeterId());

        solverScope.setBestSolution(problem);
        solverScope.setSolver(this);
        outerSolvingStarted(solverScope);
        boolean restartSolver = true;
        while (restartSolver) {
            LongTaskTimer.Sample sample = solveLengthTimer.start();
            try {
                // solvingStarted will call registerSolverSpecificMetrics(), since
                // the solverScope need to be fully initialized to calculate the
                // problem's scale metrics
                solvingStarted(solverScope);
                runPhases(solverScope);
                solvingEnded(solverScope);
            } catch (Exception e) {
                errorCounter.increment();
                solvingError(solverScope, e);
                throw e;
            } finally {
                sample.stop();
                unregisterSolverSpecificMetrics();
            }
            restartSolver = checkProblemFactChanges();
        }
        outerSolvingEnded(solverScope);
        return solverScope.getBestSolution();
    }
  • run_phase /abstract_solver
protected void runPhases(SolverScope<Solution_> solverScope) {
        if (!solverScope.getSolutionDescriptor().hasMovableEntities(solverScope.getScoreDirector())) {
            logger.info("Skipped all phases ({}): out of {} planning entities, none are movable (non-pinned).",
                    phaseList.size(), solverScope.getWorkingEntityCount());
            return;
        }
        Iterator<Phase<Solution_>> it = phaseList.iterator();
        while (!solverTermination.isSolverTerminated(solverScope) && it.hasNext()) {
            Phase<Solution_> phase = it.next();
            phase.solve(solverScope);
            // If there is a next phase, it starts from the best solution, which might differ from the working solution.
            // If there isn't, no need to planning clone the best solution to the working solution.
            if (it.hasNext()) {
                solverScope.setWorkingSolutionFromBestSolution();
            }
        }
    }
  • solver外面的phase, PhaseFactory

  • dostep
    局部搜索在当前解上尝试多个移动,并选择最佳的被接受的移动作为这一步。A step is the winning Move。在每一步,它尝试所有选定的移动,除非是选定的step,否则它不会进一步研究那个解。这就是局部搜索具有很高可扩展性的原因之一。

private void doStep(CustomStepScope<Solution_> stepScope, CustomPhaseCommand<Solution_> customPhaseCommand) {
        InnerScoreDirector<Solution_, ?> scoreDirector = stepScope.getScoreDirector();
        customPhaseCommand.changeWorkingSolution(scoreDirector);
        calculateWorkingStepScore(stepScope, customPhaseCommand);
        solver.getBestSolutionRecaller().processWorkingSolutionDuringStep(stepScope);
    }
  • 决定下一步
    • A MoveSelector which selects the possible moves of the current solution. See the chapter move and neighborhood selection.
    • An Acceptor which filters out unacceptable moves.
    • A Forager which gathers accepted moves and picks the next step from them.
  <localSearch>
    <unionMoveSelector>
      ...
    </unionMoveSelector>
    <acceptor>
      ...
    </acceptor>
    <forager>
      ...
    </forager>
  </localSearch>

在这里插入图片描述
从底向上看,理解可能的move。如果是entity+value组合,或者是entity和entity进行新的组合。也许这就是叫做组合优化的原因?

chatgpt产生的一些简单代码

// File: pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>jobshop-scheduler</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>17</maven.compiler.source>
        <maven.compiler.target>17</maven.compiler.target>
        <timefold.version>1.6.0</timefold.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>ai.timefold.solver</groupId>
            <artifactId>timefold-solver-core</artifactId>
            <version>${
    
    timefold.version}</version>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.30</version>
            <scope>provided</scope>
        </dependency>
        <dependency>
            <groupId>ch.qos.logback</groupId>
            <artifactId>logback-classic</artifactId>
            <version>1.4.11</version>
        </dependency>
    </dependencies>
</project>

// File: src/main/resources/logback.xml
<?xml version="1.0" encoding="UTF-8"?>
<configuration>
    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
        <encoder>
            <pattern>%d{
    
    HH:mm:ss.SSS} [%thread] %-5level %logger{
    
    36} - %msg%n</pattern>
        </encoder>
    </appender>

    <logger name="ai.timefold.solver" level="info"/>

    <root level="warn">
        <appender-ref ref="STDOUT"/>
    </root>
</configuration>

// File: src/main/resources/solver-config.xml
<?xml version="1.0" encoding="UTF-8"?>
<solver xmlns="https://timefold.ai/xsd/solver" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="https://timefold.ai/xsd/solver https://timefold.ai/xsd/solver/solver.xsd">
    <solutionClass>org.example.jobshop.domain.JobShopSchedule</solutionClass>
    <entityClass>org.example.jobshop.domain.JobAllocation</entityClass>

    <scoreDirectorFactory>
        <constraintProviderClass>org.example.jobshop.solver.JobShopConstraintProvider</constraintProviderClass>
    </scoreDirectorFactory>

    <termination>
        <minutesSpentLimit>5</minutesSpentLimit>
    </termination>

    <constructionHeuristic>
        <constructionHeuristicType>FIRST_FIT_DECREASING</constructionHeuristicType>
    </constructionHeuristic>

    <localSearch>
        <unionMoveSelector>
            <changeMoveSelector/>
            <swapMoveSelector/>
            <moveListFactory>
                <moveListFactoryClass>org.example.jobshop.solver.JobAllocationMoveFactory</moveListFactoryClass>
            </moveListFactory>
        </unionMoveSelector>
        <acceptor>
            <lateAcceptanceSize>400</lateAcceptanceSize>
        </acceptor>
        <forager>
            <acceptedCountLimit>4</acceptedCountLimit>
        </forager>
    </localSearch>
</solver>

// File: src/main/java/org/example/jobshop/domain/Project.java
package org.example.jobshop.domain;

@lombok.Data
@lombok.NoArgsConstructor
@lombok.AllArgsConstructor
public class Project {
    
    
    private String id;
    private String name;
    private LocalDateTime releaseDate;
    private LocalDateTime dueDate;
    private List<Job> jobs;
}

// File: src/main/java/org/example/jobshop/domain/Job.java
package org.example.jobshop.domain;

@lombok.Data
@lombok.NoArgsConstructor
@lombok.AllArgsConstructor
public class Job {
    
    
    private String id;
    private String name;
    private Project project;
    private Duration processingTime;
    private List<Resource> compatibleResources;
    private Job previousJob;
    private Job nextJob;
}

// File: src/main/java/org/example/jobshop/domain/Resource.java
package org.example.jobshop.domain;

@lombok.Data
@lombok.NoArgsConstructor
@lombok.AllArgsConstructor
public class Resource {
    
    
    private String id;
    private String name;
    private ResourceType type;
    private LocalDateTime availableFrom;
    private double costPerHour;
}

// File: src/main/java/org/example/jobshop/domain/JobAllocation.java
package org.example.jobshop.domain;

@PlanningEntity
@lombok.Data
@lombok.NoArgsConstructor
@lombok.AllArgsConstructor
public class JobAllocation {
    
    
    private String id;
    private Job job;
    
    @PlanningVariable(valueRangeProvider = "resourceRange")
    private Resource resource;
    
    @PlanningVariable(valueRangeProvider = "allocationRange")
    private JobAllocation previousAllocation;
    
    @CustomShadowVariable(
        variableListenerClass = StartTimeUpdatingVariableListener.class,
        sources = {
    
    @PlanningVariableReference(variableName = "previousAllocation"),
                  @PlanningVariableReference(variableName = "resource")})
    private LocalDateTime startTime;
    
    private LocalDateTime endTime;
    
    // ... other methods from previous versions
}

// File: src/main/java/org/example/jobshop/solver/JobShopSolver.java
package org.example.jobshop.solver;

import ai.timefold.solver.core.api.solver.SolverFactory;
import ai.timefold.solver.core.config.solver.SolverConfig;

public class JobShopSolver {
    
    
    private final SolverFactory<JobShopSchedule> solverFactory;

    public JobShopSolver() {
    
    
        SolverConfig solverConfig = SolverConfig.createFromXmlResource(
                "solver-config.xml");
        this.solverFactory = SolverFactory.create(solverConfig);
    }

    public JobShopSchedule solve(JobShopSchedule problem) {
    
    
        return solverFactory.buildSolver().solve(problem);
    }
}

// File: src/main/java/org/example/jobshop/Main.java
package org.example.jobshop;

public class Main {
    
    
    public static void main(String[] args) {
    
    
        // Create sample problem
        JobShopSchedule problem = createSampleProblem();
        
        // Create and run solver
        JobShopSolver solver = new JobShopSolver();
        JobShopSchedule solution = solver.solve(problem);
        
        // Print solution
        printSolution(solution);
    }

    private static JobShopSchedule createSampleProblem() {
    
    
        // Create resources
        List<Resource> resources = new ArrayList<>();
        resources.add(new Resource("R1", "Machine 1", ResourceType.MACHINE,
            LocalDateTime.now(), 100.0));
        resources.add(new Resource("R2", "Machine 2", ResourceType.MACHINE,
            LocalDateTime.now(), 150.0));
        
        // Create projects and jobs
        List<Project> projects = new ArrayList<>();
        List<JobAllocation> allocations = new ArrayList<>();
        
        Project project1 = new Project("P1", "Project 1",
            LocalDateTime.now(), LocalDateTime.now().plusDays(5), new ArrayList<>());
        
        // Create jobs for project 1
        Job job1 = new Job("J1", "Job 1", project1, Duration.ofHours(4),
            resources, null, null);
        Job job2 = new Job("J2", "Job 2", project1, Duration.ofHours(3),
            resources, job1, null);
        job1.setNextJob(job2);
        
        project1.setJobs(Arrays.asList(job1, job2));
        projects.add(project1);
        
        // Create allocations
        allocations.add(new JobAllocation("A1", job1, null, null, null, null));
        allocations.add(new JobAllocation("A2", job2, null, null, null, null));
        
        return new JobShopSchedule(projects, allocations, resources);
    }

    private static void printSolution(JobShopSchedule solution) {
    
    
        System.out.println("\nSolution found:");
        
        // Print by resource
        for (Resource resource : solution.getResources()) {
    
    
            System.out.println("\nResource: " + resource.getName());
            
            // Find all allocations for this resource and sort by start time
            List<JobAllocation> resourceAllocations = solution.getAllocations().stream()
                .filter(a -> a.getResource() == resource)
                .sorted(Comparator.comparing(JobAllocation::getStartTime))
                .collect(Collectors.toList());
            
            for (JobAllocation allocation : resourceAllocations) {
    
    
                System.out.printf("  %s: %s -> %s (%s)\n",
                    allocation.getJob().getName(),
                    allocation.getStartTime().format(DateTimeFormatter.ISO_LOCAL_TIME),
                    allocation.getEndTime().format(DateTimeFormatter.ISO_LOCAL_TIME),
                    allocation.getJob().getProject().getName());
            }
        }
        
        // Print by project
        for (Project project : solution.getProjects()) {
    
    
            System.out.println("\nProject: " + project.getName());
            
            List<JobAllocation> projectAllocations = solution.getAllocations().stream()
                .filter(a -> a.getJob().getProject() == project)
                .sorted(Comparator.comparing(JobAllocation::getStartTime))
                .collect(Collectors.toList());
            
            for (JobAllocation allocation : projectAllocations) {
    
    
                System.out.printf("  %s: %s on %s\n",
                    allocation.getJob().getName(),
                    allocation.getStartTime().format(DateTimeFormatter.ISO_LOCAL_TIME),
                    allocation.getResource().getName());
            }
        }
    }
}
// Domain classes
@PlanningEntity
public class Allocation {
    
    
    private Job job;
    
    @PlanningVariable(valueRangeProviderRefs = "resourceRange")
    private Resource resource;
    
    // This is the anchor planning variable
    @PlanningVariable(valueRangeProviderRefs = "allocationRange")
    private Allocation previousAllocation;
    
    // Shadow variables that get updated automatically
    @CustomShadowVariable(
        variableListenerClass = StartTimeUpdatingVariableListener.class,
        sources = {
    
    @PlanningVariableReference(variableName = "previousAllocation"),
                  @PlanningVariableReference(variableName = "resource")})
    private Integer startTime;
    
    @CustomShadowVariable(
        variableListenerClass = EndTimeUpdatingVariableListener.class,
        sources = {
    
    @PlanningVariableReference(variableName = "startTime")})
    private Integer endTime;
}

// Move implementation for changing resources
public class ResourceChangeMove extends AbstractMove<JobShopSchedule> {
    
    
    private final Allocation allocation;
    private final Resource toResource;
    
    @Override
    protected void doMoveOnGenuineVariables(ScoreDirector<JobShopSchedule> scoreDirector) {
    
    
        // Step 1: Change the resource
        scoreDirector.beforeVariableChanged(allocation, "resource");
        allocation.setResource(toResource);
        scoreDirector.afterVariableChanged(allocation, "resource");
        
        // Step 2: Update the chain
        // The allocation becomes the last in the new resource's chain
        Allocation lastInResource = findLastAllocationInResource(toResource);
        
        scoreDirector.beforeVariableChanged(allocation, "previousAllocation");
        allocation.setPreviousAllocation(lastInResource);
        scoreDirector.afterVariableChanged(allocation, "previousAllocation");
    }
}

// Move implementation for sequence changes
public class SequenceChangeMove extends AbstractMove<JobShopSchedule> {
    
    
    private final Allocation allocation;
    private final Allocation beforeAllocation;
    
    @Override
    protected void doMoveOnGenuineVariables(ScoreDirector<JobShopSchedule> scoreDirector) {
    
    
        // Step 1: Update the chain links
        Allocation oldNextAllocation = allocation.getNextAllocation();
        Allocation oldPreviousAllocation = allocation.getPreviousAllocation();
        
        // Connect old previous and next allocations
        if (oldNextAllocation != null) {
    
    
            scoreDirector.beforeVariableChanged(oldNextAllocation, "previousAllocation");
            oldNextAllocation.setPreviousAllocation(oldPreviousAllocation);
            scoreDirector.afterVariableChanged(oldNextAllocation, "previousAllocation");
        }
        
        // Step 2: Insert allocation in new position
        Allocation newNextAllocation = beforeAllocation.getNextAllocation();
        
        scoreDirector.beforeVariableChanged(allocation, "previousAllocation");
        allocation.setPreviousAllocation(beforeAllocation);
        scoreDirector.afterVariableChanged(allocation, "previousAllocation");
        
        if (newNextAllocation != null) {
    
    
            scoreDirector.beforeVariableChanged(newNextAllocation, "previousAllocation");
            newNextAllocation.setPreviousAllocation(allocation);
            scoreDirector.afterVariableChanged(newNextAllocation, "previousAllocation");
        }
    }
}

// Variable Listener for updating start times
public class StartTimeUpdatingVariableListener 
    implements VariableListener<JobShopSchedule, Allocation> {
    
    
    
    @Override
    public void afterEntityAdded(ScoreDirector<JobShopSchedule> scoreDirector, 
                               Allocation allocation) {
    
    
        updateStartTime(scoreDirector, allocation);
    }
    
    @Override
    public void afterVariableChanged(ScoreDirector<JobShopSchedule> scoreDirector,
                                   Allocation allocation) {
    
    
        updateStartTime(scoreDirector, allocation);
    }
    
    private void updateStartTime(ScoreDirector<JobShopSchedule> scoreDirector, 
                               Allocation allocation) {
    
    
        Allocation previousAllocation = allocation.getPreviousAllocation();
        Integer newStartTime;
        
        if (previousAllocation == null) {
    
    
            // First in resource - can start at 0
            newStartTime = 0;
        } else {
    
    
            // Must wait for previous allocation to finish
            newStartTime = previousAllocation.getEndTime();
        }
        
        // Consider job dependencies (if this job must wait for other jobs)
        for (Job prerequisite : allocation.getJob().getPrerequisites()) {
    
    
            Allocation prerequisiteAllocation = findAllocationForJob(prerequisite);
            if (prerequisiteAllocation != null) {
    
    
                newStartTime = Math.max(newStartTime, 
                                      prerequisiteAllocation.getEndTime());
            }
        }
        
        scoreDirector.beforeVariableChanged(allocation, "startTime");
        allocation.setStartTime(newStartTime);
        scoreDirector.afterVariableChanged(allocation, "startTime");
    }
}
package org.example.jobshop.solver;

import ai.timefold.solver.core.api.score.director.ScoreDirector;
import ai.timefold.solver.core.impl.phase.custom.CustomPhaseCommand;
import java.util.*;

public class JobShopInitializer implements CustomPhaseCommand<JobShopSchedule> {
    
    
    @Override
    public void changeWorkingSolution(ScoreDirector<JobShopSchedule> scoreDirector) {
    
    
        JobShopSchedule schedule = scoreDirector.getWorkingSolution();
        
        // Step 1: Sort jobs by priority and dependencies
        List<JobAllocation> sortedAllocations = prioritizeAllocations(schedule);
        
        // Step 2: Initialize all allocations to unassigned
        for (JobAllocation allocation : schedule.getAllocations()) {
    
    
            scoreDirector.beforeVariableChanged(allocation, "resource");
            allocation.setResource(null);
            scoreDirector.afterVariableChanged(allocation, "resource");
            
            scoreDirector.beforeVariableChanged(allocation, "previousAllocation");
            allocation.setPreviousAllocation(null);
            scoreDirector.afterVariableChanged(allocation, "previousAllocation");
        }

        // Step 3: Assign jobs considering both resource and sequence constraints
        Map<Resource, JobAllocation> lastAllocationByResource = new HashMap<>();
        Map<Job, LocalDateTime> jobEndTimes = new HashMap<>();

        for (JobAllocation allocation : sortedAllocations) {
    
    
            // Find best resource and position
            ResourceAssignment bestAssignment = findBestAssignment(
                allocation,
                schedule.getResources(),
                lastAllocationByResource,
                jobEndTimes,
                schedule);

            // Apply the assignment
            if (bestAssignment != null) {
    
    
                // Assign resource
                scoreDirector.beforeVariableChanged(allocation, "resource");
                allocation.setResource(bestAssignment.resource);
                scoreDirector.afterVariableChanged(allocation, "resource");

                // Assign previous allocation
                scoreDirector.beforeVariableChanged(allocation, "previousAllocation");
                allocation.setPreviousAllocation(bestAssignment.previousAllocation);
                scoreDirector.afterVariableChanged(allocation, "previousAllocation");

                // Update tracking maps
                lastAllocationByResource.put(bestAssignment.resource, allocation);
                jobEndTimes.put(allocation.getJob(), bestAssignment.endTime);
            }
        }
    }

    private List<JobAllocation> prioritizeAllocations(JobShopSchedule schedule) {
    
    
        List<JobAllocation> sortedAllocations = new ArrayList<>(schedule.getAllocations());
        
        // Create job dependency graph
        Map<Job, Set<Job>> dependencies = new HashMap<>();
        Map<Job, Integer> inDegree = new HashMap<>();
        
        for (Project project : schedule.getProjects()) {
    
    
            for (Job job : project.getJobs()) {
    
    
                dependencies.putIfAbsent(job, new HashSet<>());
                inDegree.putIfAbsent(job, 0);
                
                if (job.getNextJob() != null) {
    
    
                    dependencies.get(job).add(job.getNextJob());
                    inDegree.merge(job.getNextJob(), 1, Integer::sum);
                }
            }
        }

        // Topological sort with additional priority factors
        sortedAllocations.sort((a1, a2) -> {
    
    
            Job job1 = a1.getJob();
            Job job2 = a2.getJob();
            
            // First priority: dependency order
            int dep1 = inDegree.getOrDefault(job1, 0);
            int dep2 = inDegree.getOrDefault(job2, 0);
            if (dep1 != dep2) return dep1 - dep2;
            
            // Second priority: project due date
            int dueDate = job1.getProject().getDueDate()
                .compareTo(job2.getProject().getDueDate());
            if (dueDate != 0) return dueDate;
            
            // Third priority: processing time (longer first)
            return job2.getProcessingTime().compareTo(job1.getProcessingTime());
        });
        
        return sortedAllocations;
    }

    @lombok.Data
    @lombok.AllArgsConstructor
    private static class ResourceAssignment {
    
    
        private Resource resource;
        private JobAllocation previousAllocation;
        private LocalDateTime startTime;
        private LocalDateTime endTime;
        private double score;
    }

    private ResourceAssignment findBestAssignment(
            JobAllocation allocation,
            List<Resource> resources,
            Map<Resource, JobAllocation> lastAllocationByResource,
            Map<Job, LocalDateTime> jobEndTimes,
            JobShopSchedule schedule) {
    
    
        
        ResourceAssignment bestAssignment = null;
        double bestScore = Double.NEGATIVE_INFINITY;

        Job job = allocation.getJob();
        
        // Get earliest start time based on job dependencies
        LocalDateTime earliestStart = job.getPreviousJob() != null ?
            jobEndTimes.getOrDefault(job.getPreviousJob(), LocalDateTime.MIN) :
            LocalDateTime.now();

        // Try each compatible resource
        for (Resource resource : job.getCompatibleResources()) {
    
    
            JobAllocation lastAllocation = lastAllocationByResource.get(resource);
            
            // Calculate possible start time
            LocalDateTime startTime = calculateStartTime(
                earliestStart,
                lastAllocation,
                resource);
            
            LocalDateTime endTime = startTime.plus(job.getProcessingTime());
            
            // Calculate assignment score
            double score = calculateAssignmentScore(
                resource,
                startTime,
                endTime,
                job,
                schedule);

            if (score > bestScore) {
    
    
                bestScore = score;
                bestAssignment = new ResourceAssignment(
                    resource, lastAllocation, startTime, endTime, score);
            }
        }

        return bestAssignment;
    }

    private LocalDateTime calculateStartTime(
            LocalDateTime earliestStart,
            JobAllocation lastAllocation,
            Resource resource) {
    
    
        
        LocalDateTime resourceAvailable = lastAllocation != null ?
            lastAllocation.getEndTime() :
            resource.getAvailableFrom();
            
        return earliestStart.isAfter(resourceAvailable) ?
            earliestStart : resourceAvailable;
    }

    private double calculateAssignmentScore(
            Resource resource,
            LocalDateTime startTime,
            LocalDateTime endTime,
            Job job,
            JobShopSchedule schedule) {
    
    
        
        double score = 0.0;
        
        // Factor 1: Resource utilization balance
        score -= getResourceUtilization(resource, schedule) * 2;
        
        // Factor 2: Start time (earlier is better)
        score -= startTime.until(job.getProject().getDueDate(), ChronoUnit.HOURS);
        
        // Factor 3: Resource cost
        score -= resource.getCostPerHour() * 
            job.getProcessingTime().toHours();
        
        // Factor 4: Project critical path consideration
        if (isOnCriticalPath(job)) {
    
    
            score += 1000;  // Prioritize critical path jobs
        }
        
        return score;
    }

    private double getResourceUtilization(Resource resource, JobShopSchedule schedule) {
    
    
        return schedule.getAllocations().stream()
            .filter(a -> a.getResource() == resource)
            .mapToDouble(a -> a.getJob().getProcessingTime().toHours())
            .sum();
    }

    private boolean isOnCriticalPath(Job job) {
    
    
        // Simple critical path detection
        Job current = job;
        while (current.getNextJob() != null) {
    
    
            current = current.getNextJob();
        }
        return current.getProject().getDueDate()
            .minusHours(calculatePathDuration(job))
            .isBefore(LocalDateTime.now());
    }

    private long calculatePathDuration(Job startJob) {
    
    
        long duration = 0;
        Job current = startJob;
        while (current != null) {
    
    
            duration += current.getProcessingTime().toHours();
            current = current.getNextJob();
        }
        return duration;
    }
}

猜你喜欢

转载自blog.csdn.net/weixin_38812492/article/details/140932467