完整代码
待处理数据
hello flink
hello world
hello java
java代码
package com.zxl.wc;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
/**
* TODO DataStream实现Wordcount:读文件(有界流)
*
* @author cjp
* @version 1.0
*/
public class WordCountStreamDemo {
public static void main(String[] args) throws Exception {
// TODO 1.创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// TODO 2.读取数据:从文件读
DataStreamSource<String> lineDS = env.readTextFile("input/word.txt");
// TODO 3.处理数据: 切分、转换、分组、聚合
// TODO 3.1 切分、转换
SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOneDS = lineDS
.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
@Override
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
// 按照 空格 切分
String[] words = value.split(" ");
for (String word : words) {
// 转换成 二元组 (word,1)
Tuple2<String, Integer> wordsAndOne = Tuple2.of(word, 1);
// 通过 采集器 向下游发送数据
out.collect(wordsAndOne);
}
}
});
// TODO 3.2 分组
KeyedStream<Tuple2<String, Integer>, String> wordAndOneKS = wordAndOneDS.keyBy(
new KeySelector<Tuple2<String, Integer>, String>() {
@Override
public String getKey(Tuple2<String, Integer> value) throws Exception {
return value.f0;
}
}
);
// TODO 3.3 聚合
SingleOutputStreamOperator<Tuple2<String, Integer>> sumDS = wordAndOneKS.sum(1);
// TODO 4.输出数据
sumDS.print();
// TODO 5.执行:类似 sparkstreaming最后 ssc.start()
env.execute();
}
}
/**
* 接口 A,里面有一个方法a()
* 1、正常实现接口步骤:
* <p>
* 1.1 定义一个class B 实现 接口A、方法a()
* 1.2 创建B的对象: B b = new B()
* <p>
* <p>
* 2、接口的匿名实现类:
* new A(){
* a(){
* <p>
* }
* }
*/
这段代码展示了如何使用 Apache Flink 的 DataStream API 来实现一个简单的批处理 WordCount 应用程序,处理的是有界数据流。Datastream API 是 Flink 用于处理实时流数据的核心 API,但同样可以应用于批处理场景。
代码解析
创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
创建了一个 Flink 的执行环境。StreamExecutionEnvironment
是 Flink 的流处理 API 的入口点。
读取数据
DataStreamSource<String> lineDS = env.readTextFile("input/word.txt");
从指定的文件路径 "input/word.txt"
读取文本数据,并将每一行作为一个字符串元素组成的数据流 lineDS
。
处理数据
切分、转换
SingleOutputStreamOperator<Tuple2<String, Integer>> wordAndOneDS = lineDS
.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
@Override
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception {
// 按照 空格 切分
String[] words = value.split(" ");
for (String word : words) {
// 转换成 二元组 (word,1)
Tuple2<String, Integer> wordsAndOne = Tuple2.of(word, 1);
// 通过 采集器 向下游发送数据
out.collect(wordsAndOne);
}
}
});
这个 flatMap
函数接收每一行文本,并将其拆分成单个单词,然后将每个单词转换为一个 Tuple2<String, Integer>
,表示为 (单词, 1)
,表示该单词出现了一次。
分组
KeyedStream<Tuple2<String, Integer>, String> wordAndOneKS = wordAndOneDS.keyBy(
new KeySelector<Tuple2<String, Integer>, String>() {
@Override
public String getKey(Tuple2<String, Integer> value) throws Exception {
return value.f0; // 选择第一个字段作为 key
}
}
);
按照 Tuple2
的第一个元素(即单词)进行分组。
聚合
SingleOutputStreamOperator<Tuple2<String, Integer>> sumDS = wordAndOneKS.sum(1);
对每个分组内的 Tuple2
的第二个元素(即计数器)求和,得到每个单词的总出现次数。
输出结果
sumDS.print();
打印聚合后的结果,即每个单词及其出现次数。
执行
env.execute();
提交 Flink 作业并开始执行。
流程图可视化
以下是代码执行流程的可视化流程图:
+---------------------+ +---------------------+ +---------------------+
| 创建执行环境 | | 读取文件数据 | | 切分并转换数据 |
| StreamExecutionEnvironment.getExecutionEnvironment() |-----> | env.readTextFile() |-----> | lineDS.flatMap() |
+---------------------+ +---------------------+ +---------------------+
| | |
v v v
+---------------------+ +---------------------+ +---------------------+
| 分组 | | 聚合计数 | | 输出结果 |
| wordAndOneDS.keyBy() |-----> | wordAndOneKS.sum(1) |-----> | sumDS.print() |
+---------------------+ +---------------------+ +---------------------+
| | |
v v v
+---------------------+ +---------------------+ +---------------------+
| 执行 Flink 作业 | | | | |
| env.execute() | | | | |
+---------------------+ +---------------------+ +---------------------+
通过这个流程图,我们可以清晰地看到代码的执行流程,从创建执行环境开始,一直到最终执行 Flink 作业。
日志输出
附:pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.zxl</groupId>
<artifactId>FlinkTutorial-1.17</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<flink.version>1.17.0</flink.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java</artifactId>
<version>${flink.version}</version>
<!--<scope>provided</scope>-->
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients</artifactId>
<version>${flink.version}</version>
<!--<scope>provided</scope>-->
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-runtime-web</artifactId>
<version>${flink.version}</version>
<!--<scope>provided</scope>-->
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-files</artifactId>
<version>${flink.version}</version>
<!--<scope>provided</scope>-->
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-datagen</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.27</version>
</dependency>
<!--目前中央仓库还没有 jdbc的连接器,暂时用一个快照版本-->
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-jdbc</artifactId>
<version>1.16.3</version>
<!--<version>3.1.0-1.17</version>-->
<!--<version>1.17-SNAPSHOT</version>-->
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-statebackend-rocksdb</artifactId>
<version>${flink.version}</version>
<!--<scope>provided</scope>-->
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.3.4</version>
<!--<scope>provided</scope>-->
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-statebackend-changelog</artifactId>
<version>${flink.version}</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>com.google.code.findbugs</groupId>
<artifactId>jsr305</artifactId>
<version>1.3.9</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-api-java-bridge</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner-loader</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-runtime</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-files</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>
<repositories>
<repository>
<id>apache-snapshots</id>
<name>apache snapshots</name>
<url>https://repository.apache.org/content/repositories/snapshots/</url>
<!--<url>https://maven.aliyun.com/repository/apache-snapshots</url>-->
</repository>
</repositories>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.2.4</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<artifactSet>
<excludes>
<exclude>com.google.code.findbugs:jsr305</exclude>
<exclude>org.slf4j:*</exclude>
<exclude>log4j:*</exclude>
<exclude>org.apache.hadoop:*</exclude>
</excludes>
</artifactSet>
<filters>
<filter>
<!-- Do not copy the signatures in the META-INF folder.
Otherwise, this might cause SecurityExceptions when using the JAR. -->
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers combine.children="append">
<transformer
implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer">
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>