连续函数空间、有界函数空间等数学符号

C 0 C^{0} C0: 连续函数。

C k C^{k} Ck: 函数是连续的,且其 k k k 阶导数连续。

C ∞ C^{\infty} C: 光滑函数。

L 1 ( Ω ) L_1(\Omega) L1(Ω): Ω \Omega Ω 上Lebesgue-可积函数全体。

L ∞ ( Ω ) L_{\infty}(\Omega) L(Ω): Ω \Omega Ω 上有界函数全体。

Consider an open set U U U on the real line and a function f f f defined on U U U with real values. Let k k k be a non-negative integer. The function f f f is said to be of differentiability class C k C^{k} Ck if the derivatives f ′ , f ″ , … , f ( k ) f^′ , f^″ , … , f^{( k )} f,f,,f(k) exist and are continuous on U U U. If f f f is k k k-differentiable on U U U, then it is at least in the class C k − 1 C^{k − 1} Ck1 since f ′ , f ″ , … , f ( k − 1 ) f^′ , f^″ , … , f^{( k -1)} f,f,,f(k1) are continuous on U U U. The function f f f is said to be infinitely differentiable, smooth, or of class C ∞ C^{\infty} C, if it has derivatives of all orders on U U U. (So all these derivatives are continuous functions over U U U.)

若一函数是连续的,则称其为 C 0 C^{0} C0 函数;若函数 1 1 1 阶可导,且其 1 1 1 阶导函数连续,则被称为 C 1 C^{1} C1 函数;若 n n n 阶可导,且其 n n n 阶导函数连续,则为 C n C^{n} Cn 函数。而光滑函数是任意阶导函数都存在且连续的函数,记为 C ∞ C^{\infty} C

参考文献:
https://en.wikipedia.org/wiki/Smoothness