YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构

一、本文介绍

本文记录的是基于GhostNet v1的YOLOv11网络模型轻量化方法研究GhostNet中的Ghost模块Ghost瓶颈结构是其轻量化的关键。Ghost模块克服了传统卷积层计算资源需求大的问题,Ghost瓶颈则合理设计了通道数量的变化以及与捷径连接的方式,能更好地在减少计算成本的同时保持较高性能,从而提升模型在移动设备上的应用能力和效率。

模型 参数量 计算量 推理速度
YOLOv11m 20.0M 67.6GFLOPs 3.5ms
Improved 14.5M 32.0GFLOPs 3.2ms

专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

猜你喜欢

转载自blog.csdn.net/qq_42591591/article/details/143321172