动态规划
思路:
- 确定dp数组(dp table)以及下标的含义
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
其实用i来表示也可以! 用i-1就是为了方便后面dp数组初始化的。
- 确定递推公式
在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:
- if (word1[i - 1] == word2[j - 1])
不操作- if (word1[i - 1] != word2[j - 1])
增
删
换
如上4种情况
-
if (word1[i - 1] == word2[j - 1])
那么说明不用任何编辑
dp[i][j] = dp[i - 1][j - 1];
-
if (word1[i - 1] != word2[j - 1])
,此时就需要编辑了- 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。
即dp[i][j] = dp[i - 1][j] + 1;
- 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。
即dp[i][j] = dp[i][j - 1] + 1;
- 添加元素去哪了?
word2添加一个元素,相当于word1删除一个元素,例如 word1 = “ad” ,word2 = “a”,word1删除元素’d’ 和 word2添加一个元素’d’,变成word1=“a”, word2=“ad”, 最终的操作数是一样!
- 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。
-
操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。
可以回顾一下,if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。
那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。
所以dp[i][j] = dp[i - 1][j - 1] + 1;
综上,当 if (word1[i - 1] != word2[j - 1])
时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
- dp数组如何初始化
再回顾一下dp[i][j]的定义:
dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]。
dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。
那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;
同理dp[0][j] = j;
class Solution {
public int minDistance(String word1, String word2) {
int[][] dp = new int[word1.length() + 1][word2.length() + 1];
for(int i = 1; i <= word1.length(); i++){
dp[i][0] = i;
}
for(int j = 1; j <= word2.length(); j++){
dp[0][j] = j;
}
for(int i =1; i <= word1.length(); i++){
for(int j = 1; j <= word2.length(); j++){
if(word1.charAt(i - 1) == word2.charAt(j - 1)){
dp[i][j] = dp[i -1][j - 1];
}else{
dp[i][j] = Math.min(Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1), dp[i - 1][j - 1] + 1);
}
}
}
return dp[word1.length()][word2.length()];
}
}