递归
21 合并两个有序链表
正常可使用双指针法遍历,但还可以用递归实现。
class Solution {
public:
ListNode* mergeTwoLists(ListNode* list1, ListNode* list2) {
if (!list1) return list2;
else if (!list2) return list1;
else if (list1->val < list2->val) {
list1->next = mergeTwoLists(list1->next, list2);
return list1;
} else {
list2->next = mergeTwoLists(list1, list2->next);
return list2;
}
}
};
60 排序序列
试画出递归树,发现第 m m m 层分支下有 ( n − m ) ! (n-m)! (n−m)! 个情况。于是可以依次考察 k k k 对 ( n − 1 ) ! (n-1)! (n−1)! 到 1 ! 1! 1! 的商 q q q,其为剩余数字按顺序的第 q q q 个。分析边界问题:确定倒数第2位时,也确定了最后一位,即 1 ! = 1 1!=1 1!=1 同时序数从 0 0 0 开始。
此即逆康托展开。
class Solution {
const vector<int> factorial = {
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880};
public:
string getPermutation(int n, int k) {
string order;
string seq = string("123456789").substr(0, n);
--k;
while(k) {
unsigned int quotient = k / factorial[n - 1];
order.push_back(seq[quotient]);
seq.erase(seq.begin() + quotient);
k %= factorial[n - 1];
--n;
}
return order + seq;
}
};
143 重排链表
经典链表算法的结合:①快慢指针法找到链表中间结点;②对中间节点以后的部分进行三指针迭代翻转;③交错合并两个链表。
(注:分割链表时前链表尾指针需维护或指向空)
class Solution {
public:
void reorderList(ListNode* head) {
if (!head) return;
ListNode* list1 = head;
ListNode* mid = midNode(head);
ListNode* list2 = mid->next;
mid->next = nullptr;
list2 = reverseList(list2);
mergeList(list1, list2);
}
ListNode* midNode(ListNode* head) {
ListNode* slow = head;
ListNode* fast = head;
while(fast->next && fast->next->next) {
slow = slow->next;
fast = fast->next->next;
}
return slow;
}
ListNode* reverseList(ListNode* head) {
ListNode* prev = nullptr;
ListNode* curr = head;
ListNode* next = nullptr;
while (curr) {
next = curr->next;
curr->next = prev;
prev = curr;
curr = next;
}
return prev;
}
void mergeList(ListNode* list1, ListNode* list2) {
ListNode* curr1 = nullptr;
ListNode* curr2 = nullptr;
while (list1 && list2) {
curr1 = list1->next;
curr2 = list2->next;
list1->next = list2;
list1 = curr1;
list2->next = list1;
list2 = curr2;
}
}
};
233 数字 1 的个数
数学题,关键在于正确写出计数表达式:
⌊ n 1 0 i + 1 ⌋ 1 0 i + min { max { n ( m o d 1 0 i + 1 ) − 1 0 i + 1 , 0 } , 1 0 i } . \lfloor \frac{n}{10^{i+1}}\rfloor10^i+\min\{\max\{n({\rm mod}\ 10^{i+1})-10^i+1,0\},10^i\}. ⌊10i+1n⌋10i+min{
max{
n(mod 10i+1)−10i+1,0},10i}.
class Solution {
const vector<long long> mag = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000};
public:
int countDigitOne(int n) {
int cnt = 0;
for (int i = 0; n >= mag[i]; ++i)
cnt += (n / mag[i + 1]) * mag[i] + min(max(n % mag[i + 1] - mag[i] + 1, 0LL), mag[i]);
return cnt;
}
};
342 4 的幂
掩码 (mask) 题: 2 2 2 的幂二进制中至多有 1 1 1 位为 0 0 0;在此基础上 4 4 4 的幂二进制中 1 1 1 只能出现在低位开始的偶数位上。
class Solution {
public:
bool isPowerOfFour(int n) {
return n > 0 && !(n & (n-1)) && !(n & 0xAAAAAAAA);
}
};
贪心
55 跳跃游戏
不难发现导致无法抵达终点的只有出现数字 0 0 0 的情况,反向遍历并记录所需跨度,最终跨度大于 1 1 1 等效于起点数字为 0 0 0。
class Solution {
public:
bool canJump(vector<int>& nums) {
int span = 1;
for (int i = nums.size() - 1; i > 0; i--) {
if (nums[i - 1] >= span) span = 0;
span++;
}
return span == 1;
}
};
134 加油站
正向遍历,若 x x x 无法抵达 y + 1 y+1 y+1,那么 x x x 到 y y y 间的任何一点也都不可能抵达 y + 1 y+1 y+1,从而剪支。
但还可以采用反向遍历,转而考虑额外油量需求:不存在解时需求为正;存在解时出发点一定为使得需求最小的点。
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int remains = 0, maxRemains = 0, start = 0;
for (int i = gas.size() - 1; i >= 0; i--) {
remains += gas[i] - cost[i];
if (remains >= maxRemains) {
maxRemains = remains;
start = i;
}
}
return remains < 0 ? -1 : start;
}
};
135 分发糖果
可以转而考察递增递减序列:递增序列中下一位比上一位多 1 1 1,递减序列中每多一位则前面所有位均多 1 1 1 (即增加序列长度值)。
边界情况:不增不减时,序列结束;递减序列长超过前面递增序列长时,递增序列的末位视为递减序列的初位。
class Solution {
public:
int candy(vector<int>& ratings) {
int cnt = 1, incLen = 1, decLen = 0, incPrev = 1;
for (int i = 1; i < ratings.size(); i++) {
if (ratings[i] >= ratings[i - 1]) {
prev = ratings[i] == ratings[i - 1] ? 1 : incPrev + 1;
cnt += incPrev; incLen = incPrev; decLen = 0;
} else {
decLen = decLen + 1 == incLen ? decLen + 2 : decLen + 1;
cnt += decLen; prev = 1;
}
}
return cnt;
}
};
605 种花问题
当前位置和前后位置都为 0 0 0 时待种花数 − 1 -1 −1,待种花为 0 0 0 时可直接返回以剪支。
class Solution {
public:
bool canPlaceFlowers(vector<int>& flowerbed, int n) {
if (!n) return true;
for (int i = 0; i < flowerbed.size(); i++) {
if ((i == 0 || flowerbed[i - 1] == 0) && flowerbed[i] == 0 &&
(i == flowerbed.size() - 1 || flowerbed[i + 1] == 0)) {
n--;
if (!n) return true;
flowerbed[i] = 1;
}
}
return false;
}
};
621 任务调度器
贪心,按任务出现次数从最大到最小排布。
class Solution {
public:
int leastInterval(vector<char>& tasks, int n) {
vector<int> cnt(26, 0);
for (int i = 0; i < tasks.size(); i++)
cnt[tasks[i] - 'A']++;
sort(cnt.begin(), cnt.end());
int len = n * (cnt[25] - 1) + cnt[25];
for (int i = 0; i < 25; i ++)
if (cnt[i] == cnt[25]) len++;
return max(len, static_cast<int>(tasks.size()));
}
};
分治
23 合并 K 个升序链表
分治,每层合并相邻的两个链表。
class Solution {
public:
ListNode* mergeKLists(vector<ListNode*>& lists) {
return mergeDivide(lists, 0, lists.size() - 1);
}
ListNode* mergeDivide(vector<ListNode*>& lists, int begin, int end) {
if (begin == end) return lists[begin];
if (begin > end) return nullptr;
int mid = (begin + end) >> 1;
return mergeList(mergeDivide(lists, begin, mid), mergeDivide(lists, mid + 1, end));
}
ListNode* mergeList(ListNode* list1, ListNode* list2) {
ListNode* dummy = new ListNode(-1);
ListNode* curr = dummy;
ListNode* curr1 = list1;
ListNode* curr2 = list2;
while (curr1 && curr2) {
if (curr1->val <= curr2->val) {
curr->next = curr1;
curr1 = curr1->next;
} else {
curr->next = curr2;
curr2 = curr2->next;
}
curr = curr->next;
}
if (curr1) curr->next = curr1;
if (curr2) curr->next = curr2;
ListNode* merged = dummy->next;
delete(dummy);
return merged;
}
};
53 最大子数组和
记 f ( i ) f(i) f(i) 为以 i i i 位置结尾的最大子数组和,即求 max { f ( i ) } i = 1 n − 1 \max\{f(i)\}_{i=1}^{n-1} max{ f(i)}i=1n−1;不难发现 f ( i − 1 ) ≤ 0 f(i-1)\leq 0 f(i−1)≤0 时, f ( i ) = n u m s [ i ] f(i)={\rm nums}[i] f(i)=nums[i]。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int prev = 0, maxCurr = nums[0];
for (int i = 0; i < nums.size(); i++) {
prev = prev < 0 ? nums[i] : prev + nums[i];
maxCurr = max(maxCurr, prev);
}
return maxCurr;
}
};
148 排序链表
归并:①快慢指针法找到链表中间结点;②合并两个有序链表。
(注:分割链表时前链表尾指针需维护或指向空)
class Solution {
public:
ListNode* sortList(ListNode* head) {
return mergeSort(head);
}
ListNode* mergeSort(ListNode* head) {
if (!head || !head->next) return head;
ListNode* head1 = head;
ListNode* mid = midNode(head);
ListNode* head2 = mid->next;
mid->next = nullptr;
return mergeList(mergeSort(head1), mergeSort(head2));
}
ListNode* midNode(ListNode* head) {
ListNode* slow = head;
ListNode* fast = head;
while (fast->next && fast->next->next) {
slow = slow->next;
fast = fast->next->next;
}
return slow;
}
ListNode* mergeList(ListNode* head1, ListNode* head2) {
ListNode* dummy = new ListNode(-1);
ListNode* curr = dummy;
ListNode* curr1 = head1;
ListNode* curr2 = head2;
while (curr1 && curr2) {
if (curr1->val <= curr2->val) {
curr->next = curr1;
curr1 = curr1->next;
} else {
curr->next = curr2;
curr2 = curr2->next;
}
curr = curr->next;
}
if (curr1) curr->next = curr1;
if (curr2) curr->next = curr2;
ListNode* merged = dummy->next;
delete(dummy);
return merged;
}
};
327 区间和个数
对前缀和归并排序过程中使用滑动窗口计数。
class Solution {
public:
vector<long> preSum{
0};
int mini, maxi;
int countRangeSum(vector<int>& nums, int lower, int upper) {
long sum = 0;
for (int i = 0; i < nums.size(); i++) {
sum += nums[i];
preSum.push_back(sum);
}
mini = lower, maxi = upper;
return mergeCnt(0, preSum.size() - 1);
}
int mergeCnt(int begin, int end) {
if (begin == end) return 0;
int mid = (begin + end) >> 1;
int cnt = mergeCnt(begin, mid) + mergeCnt(mid + 1, end);
int left = mid + 1, right = mid + 1;
for (int i = begin; i <= mid; i++) {
while (left <= end && preSum[left] - preSum[i] < mini) left++;
while (right <= end && preSum[right] - preSum[i] <= maxi) right++;
cnt += right - left;
}
vector<long> merged;
left = begin, right = mid + 1;
while (left <= mid && right <= end) {
if (preSum[left] < preSum[right]) merged.push_back(preSum[left++]);
else merged.push_back(preSum[right++]);
}
while (right <= end && left > mid) merged.push_back(preSum[right++]);
while (left <= mid && right > end) merged.push_back(preSum[left++]);
for (int i = 0; i < merged.size(); i++) preSum[begin + i] = merged[i];
return cnt;
}
};
654 最大二叉树
构造单调递减栈:入栈时,最后出栈的一定为左边最大值(最后出栈为当前结点的左孩子);若无出栈,待入栈的暂时作为右边的最大值(当前结点暂时为栈顶结点的右孩子)。栈顶结点一定是根节点(即最大值)。
class Solution {
public:
TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
vector<int> stack;
vector<TreeNode*> tree(int(nums.size()));
for (int i = 0; i < nums.size(); ++i) {
tree[i] = new TreeNode(nums[i]);
// 单调递减栈, 数组下标入栈
// 出栈至左边最大值作为当前节点左孩子
while (!stack.empty() && nums[i] > nums[stack.back()]) {
tree[i]->left = tree[stack.back()];
stack.pop_back();
}
// 栈顶最终将右边最大值作为右孩子
if (!stack.empty()) tree[stack.back()]->right = tree[i];
// 当前结点入栈
stack.push_back(i);
}
// 栈底一定为最大值(即根节点)
return tree[stack[0]];
}
};
回溯
46 全排列
回溯,全部数字选完时抵达叶子结点,载入记录每层剩余数字情况。
class Solution {
public:
vector<vector<int>> allOrder;
vector<int> order;
vector<vector<int>> permute(vector<int>& nums) {
allOrder.clear();
order.clear();
vector<bool> selected(nums.size(), false);
backtracking(nums, selected);
return allOrder;
}
void backtracking(vector<int>& nums, vector<bool>& selected) {
if (order.size() == nums.size()) {
allOrder.push_back(order);
return;
}
for (int i = 0; i < nums.size(); i++) {
if (selected[i]) continue;
selected[i] = true;
order.push_back(nums[i]);
backtracking(nums, selected);
order.pop_back();
selected[i] = false;
}
}
};
51 N 皇后
回溯,以行为分支,列为深度;递归遍历时判断是否合法,仅当合法时写入Q;判断合法时仅需判断列、左上、右上。
class Solution {
public:
vector<vector<string>> allOrder;
vector<vector<string>> solveNQueens(int n) {
allOrder.clear();
vector<string> order(n, string(n, '.'));
backtracking(n, 0, order);
return allOrder;
}
void backtracking(int n, int raw, vector<string>& order) {
if (raw == n) {
allOrder.push_back(order);
return;
}
for (int col = 0; col < n; col++) {
if (isValid(n, raw, col, order)) {
order[raw][col] = 'Q';
backtracking(n, raw + 1, order);
order[raw][col] = '.';
}
}
}
bool isValid(int n, int raw, int col, vector<string>& order) {
for (int i = 0; i < raw; i++) if(order[i][col] == 'Q') return false;
for (int i = raw - 1, j = col - 1; i >= 0 && j >=0; i--, j--)
if (order[i][j] == 'Q') return false;
for (int i = raw - 1, j = col + 1; i >= 0 && j <= n - 1; i--, j++)
if (order[i][j] == 'Q') return false;
return true;
}
};
77 组合
回溯,全部数字选完时抵达叶子结点,载入遍历起点。
class Solution {
public:
vector<vector<int>> result;
vector<int> path;
vector<vector<int>> combine(int n, int k) {
result.clear();
path.clear();
backtracking(n, k, 1);
return result;
}
void backtracking(int n, int k, int begin) {
if (path.size() == k) {
result.push_back(path);
return;
}
for (int i = begin; i <= n; ++i) {
path.push_back(i);
backtracking(n, k, i + 1);
path.pop_back();
}
}
};
95 不同的二叉搜索树 II
二叉搜索树左子树值一定都比根节点小,右子树值一定都比根节点大,由此进行递归。
class Solution {
public:
vector<TreeNode*> generateTrees(int n) {
if (!n) return {
};
return backtracking(1, n);
}
vector<TreeNode*> backtracking(int begin, int end) {
if (begin > end) return {
nullptr};
vector<TreeNode*> subtree;
for (int i = begin; i <= end; i++) {
vector<TreeNode*> left = backtracking(begin, i - 1);
vector<TreeNode*> right = backtracking(i + 1, end);
for (int jl = 0; jl < left.size(); jl++) {
for (int jr = 0; jr < right.size(); jr++) {
TreeNode* root = new TreeNode(i);
root->left = left[jl];
root->right = right[jr];
subtree.push_back(root);
}
}
}
return subtree;
}
};
797 所有可能路径
DFS,深搜。
class Solution {
public:
vector<vector<int>> allPath;
vector<int> path;
vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
path.push_back(0);
dfs(graph, 0, graph.size() - 1);
return allPath;
}
void dfs(vector<vector<int>>& graph, int curr, int end) {
if (curr == end) {
allPath.push_back(path);
return;
}
for (auto& next: graph[curr]) {
path.push_back(next);
dfs(graph, next, end);
path.pop_back();
}
}
};
动态规划
62 不同路径
不难发现路径数为 ( n + m − 2 m − 1 ) = ( n + m − 2 n − 1 ) {n+m-2 \choose m-1}={n+m-2 \choose n-1} (m−1n+m−2)=(n−1n+m−2)。
class Solution {
public:
int uniquePaths(int m, int n) {
long long cnt = 1;
for (int i = n, j = 1; j < m; i++, j++) {
cnt = cnt * i / j;
}
return cnt;
}
};
70 爬楼梯
动规入门, f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(n)=f(n-1)+f(n-2) f(n)=f(n−1)+f(n−2)。
class Solution {
public:
int climbStairs(int n) {
vector<int> dp(3);
dp[0] = 0, dp[1] = 0, dp[2] = 1;
for (int i = 0; i < n; i++) {
dp[0] = dp[1], dp[1] = dp[2];
dp[2] = dp[0] + dp[1];
}
return dp[2];
}
};
120 三角形最小路径和
自下向上原地修改数组, f ( i , j ) = min { f ( i + 1 , j ) , f ( i + 1 , j + 1 ) } + t r i [ i ] [ j ] f(i,j)=\min\{f(i+1,j),f(i+1,j+1)\}+{\rm tri}[i][j] f(i,j)=min{ f(i+1,j),f(i+1,j+1)}+tri[i][j];由于出发点唯一, f ( 0 , 0 ) f(0,0) f(0,0) 即为所求。
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
for (int i = triangle.size() - 2; i >= 0; i--)
for (int j = 0; j <= i; j ++)
triangle[i][j] = min(triangle[i + 1][j], triangle[i + 1][j + 1]) + triangle[i][j];
return triangle[0][0];
}
};
124 二叉树中的最大路径和
回溯,叶子结点返回 0 0 0,根节点返回根值与左右子树值中最大的和。根节点处最大值可能为:①左右子树最大值与根值和;②子树中的最大值。
class Solution {
public:
int maxPath = INT_MIN;
int maxPathSum(TreeNode* root) {
backtracking(root);
return maxPath;
}
int backtracking(TreeNode* root) {
if (!root) return 0;
int maxLeft = max(backtracking(root->left), 0);
int maxRight = max(backtracking(root->right), 0);
maxPath = max(maxPath, root->val + maxLeft + maxRight);
return root->val + max(maxLeft, maxRight);
}
};
198 打家劫舍
动规, f ( i ) = max { f ( i − 2 ) + n u m s [ i ] , f ( i − 1 ) } f(i)=\max\{f(i-2)+{\rm nums}[i],f(i-1)\} f(i)=max{ f(i−2)+nums[i],f(i−1)}。
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.empty()) return 0;
if (nums.size() == 1) return nums[0];
vector<int> dp(3);
dp[0] = nums[0], dp[1] = max(nums[0], nums[1]);
for (int i = 2; i < nums.size(); i++) {
dp[2] = max(dp[0] + nums[i], dp[1]);
dp[0] = dp[1], dp[1] = dp[2];
}
return dp[1];
}
};
图论
310 最小高度树
拓扑排序,从度 “1” 结点开始删除(BFS),余下的至多两个结点即为所求。
class Solution {
public:
vector<int> findMinHeightTrees(int n, vector<vector<int>>& edges) {
if (n == 1) return {
0};
vector<int> degree(n);
vector<vector<int>> edge(n);
queue<int> queue;
vector<int> root;
for (auto &i : edges) {
edge[i[0]].push_back(i[1]);
edge[i[1]].push_back(i[0]);
degree[i[0]]++;
degree[i[1]]++;
}
for (int i = 0; i < n; i++)
if (degree[i] == 1) queue.push(i);
int remains = n;
while (remains > 2) {
int size = queue.size();
for (int i = 0; i < size; i++) {
int curr = queue.front();
for (auto &j : edge[curr]) {
degree[j]--;
if (degree[j] == 1) queue.push(j);
}
queue.pop();
}
remains -= size;
}
while (!queue.empty()) {
root.push_back(queue.front());
queue.pop();
}
return root;
}
};
332 重新安排行程
有向图 Hierholzer 算法,遍历结点时倒序入栈,遍历过的边从边集中删去。
class Solution {
public:
unordered_map<string, priority_queue<string, vector<string>, greater<string>>> edge;
vector<string> stack;
vector<string> findItinerary(vector<vector<string>>& tickets) {
for (int i = 0; i < tickets.size(); i++)
edge[tickets[i][0]].push(tickets[i][1]);
hierholzer("JFK");
reverse(stack.begin(), stack.end());
return stack;
}
void hierholzer(string curr) {
while(edge.count(curr) && !edge[curr].empty()) {
string next = edge[curr].top();
edge[curr].pop();
hierholzer(next);
}
stack.push_back(curr);
}
};
997 找到小镇的法官
图论入门,即找到入度为 n − 1 n-1 n−1 的顶点。
class Solution {
public:
int findJudge(int n, vector<vector<int>>& trust) {
vector<int> degree(n + 1, 0);
for (int i = 0; i < trust.size(); i++) {
degree[trust[i][0]]--;
degree[trust[i][1]]++;
}
for (int i = 1; i <= n; i++)
if (degree[i] == n - 1) return i;
return -1;
}
};
1446 重新规划路线
构造邻接表,使用 “1” 标记原方向边,使用 “0” 标记反方向边;从 “0” 出发 dfs,遇到 “1” 边则修改数量 + 1 +1 +1。
class Solution {
public:
int minReorder(int n, vector<vector<int>>& connections) {
vector<vector<pair<int, int>>> edges(n);
for (auto e : connections) {
edges[e[0]].push_back(make_pair(e[1], 1));
edges[e[1]].push_back(make_pair(e[0], 0));
}
return dfs(0, -1, edges);
}
int dfs(int curr, int prev, vector<vector<pair<int, int>>>& edges) {
int cnt = 0;
for (auto& next : edges[curr])
if (next.first != prev)
cnt = cnt + next.second + dfs(next.first, curr, edges);
return cnt;
}
};
1615 最大网络秩
枚举。
class Solution {
public:
int maximalNetworkRank(int n, vector<vector<int>>& roads) {
vector<vector<bool>> connected(n, vector<bool>(n, false));
vector<int> degree(n, 0);
for (int i = 0; i < roads.size(); i++) {
connected[roads[i][0]][roads[i][1]] = true;
connected[roads[i][1]][roads[i][0]] = true;
degree[roads[i][0]]++; degree[roads[i][1]]++;
}
int maxRank = 0;
for (int i = 0; i < n; i++)
for (int j = i + 1; j < n; j++)
maxRank = max(maxRank, degree[i] + degree[j] - int(connected[i][j]));
return maxRank;
}
};
IO
上机测试需要自己补全IO,简单写一下IO模板以备用。
共同头文件及命名空间。
#include <iostream>
#include <sstream>
#include <vector>
using namespace std;
读取一行数据为vector
// 外部声明
// 整型
void get_line_vector_int(vector<int>& nums) {
string line;
getline(cin, line);
istringstream iss(line);
string buffer;
while (getline(iss, buffer, ' '))
nums.emplace_back(stoi(buffer));
}
// 字符型
void get_line_vector_int(vector<char>& chs) {
string line;
getline(cin, line);
istringstream iss(line);
string buffer;
while (getline(iss, buffer, ' '))
chs.emplace_back(buffer[0]);
}
读取一行数据为ListNode
// 标准单链表(无哨兵结点)
struct ListNode{
int val;
ListNode *next;
explicit ListNode(int x) : val(x), next(nullptr){
}
};
// 返回头指针
ListNode* get_line_list_int() {
string line;
getline(cin, line);
istringstream iss(line);
string buffer;
ListNode* tail = new ListNode(-1);
ListNode* dummy = tail;
while (getline(iss, buffer, ' ')) {
tail->next = new ListNode(stoi(buffer));
tail = tail->next;
}
ListNode* head = dummy->next;
delete(dummy);
return head;
}
读取一行数据为TreeNode(层次)
// 标准二叉树
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
explicit TreeNode(int x) : val(x), left(nullptr), right(nullptr) {
}
};
// 选择取值范围外的数值作为空指针标志
const int null = 1001;
// 由精简数组构造二叉树
TreeNode* create_tree(vector<int>& tree, int pos) {
if (pos >= tree.size() || tree[pos] >= null) return nullptr;
TreeNode* root = new TreeNode(tree[pos]);
root->left = create_tree(tree, pos << 1);
root->right = create_tree(tree, (pos << 1) + 1);
return root;
}
// 返回根结点
TreeNode* get_line_tree_int() {
// 读入一行数据
string line;
getline(cin, line);
istringstream iss(line);
string buffer;
vector<int> tree;
tree.emplace_back(null);
while (getline(iss, buffer, ' '))
tree.emplace_back(stoi(buffer));
TreeNode* root = create_tree(tree, 1);
return root;
}
读取多行数据为vector<vector>
// 外部声明
// 整型
void get_lines_vector_vector_int(vector<vector<int>>& nums) {
string line;
while (getline(cin, line)) {
istringstream iss(line);
string buffer;
vector<int> raw;
while (getline(iss, buffer, ' '))
raw.emplace_back(stoi(buffer));
nums.emplace_back(raw);
}
}
// 字符串型
void get_lines_vector_vector_str(vector<vector<string>>& nums) {
string line;
while (getline(cin, line)) {
istringstream iss(line);
string buffer;
vector<string> raw;
while (getline(iss, buffer, ' ')) {
raw.emplace_back(buffer);
}
nums.emplace_back(raw);
}
}
读取多行数据为vector<ListNode>
// 外部声明
void get_lines_vector_list(vector<ListNode*>& nums) {
string line;
while (getline(cin, line)) {
istringstream iss(line);
string buffer;
ListNode* tail = new ListNode(-1);
ListNode* dummy = tail;
while (getline(iss, buffer, ' ')) {
tail->next = new ListNode(stoi(buffer));
tail = tail->next;
}
ListNode* head = dummy->next;
delete(dummy);
nums.emplace_back(head);
}
}
vector<ListNode>输出
void put_lines_vector_list(vector<ListNode*>& res) {
for (auto list : res) {
for (ListNode* curr = list; curr; curr = curr->next)
cout << curr->val << ' ';
cout << endl;
}
}
vector<string>输出
void put_lines_vector_string(vector<string>& res) {
for (auto& str : res) cout << str << endl;
}