Kubernetes运行大数据组件-运行spark

在Kubernetes上运行Spark作业,你需要创建一个Spark的部署和相应的Kubernetes资源。以下是一个简化的例子,展示了如何使用Kubernetes部署Spark Driver和Executor。

首先,确保你有一个运行中的Kubernetes集群,并且kubectl 命令行工具已经配置好可以与集群通信。

创建Spark的配置 ConfigMap:

apiVersion: v1

kind: ConfigMap

metadata:

  name: spark-config

data:

  spark-defaults.conf: |

    spark.kubernetes.driver.pod.name=spark-driver-pod

    spark.kubernetes.executor.pod.namespace=default

...

创建Spark Driver的部署:

apiVersion: apps/v1

kind: Deployment

metadata:

  name: spark-driver

spec:

  replicas: 1

  template:

    metadata:

      labels:

        component: spark

        node: driver

    spec:

      containers:

        - name: spark-kubernetes-driver

          image: gcr.io/spark-operator/spark-driver:v2.4.5

          command: ["/bin/spark-submit"]

          args: [

            "--master", "k8s",

            "--deploy-mode", "cluster",

            "--name", "spark-job",

            "--class", "org.apache.spark.examples.SparkPi",

            "--conf", "spark.kubernetes.driver.pod.name=spark-driver-pod",

            ...

            "local:///path/to/your/spark/job.jar"

          ]

          env:

            - name: SPARK_CONF_DIR

              value: "/opt/spark/conf"

          volumeMounts:

            - name: spark-config-volume

              mountPath: /opt/spark/conf

      volumes:

        - name: spark-config-volume

          configMap:

            name: spark-config

创建Spark Executor的部署:

apiVersion: apps/v1

kind: Deployment

metadata:

  name: spark-executors

spec:

  replicas: 2

  template:

    metadata:

      labels:

        component: spark

        node: executor

    spec:

      containers:

        - name: spark-kubernetes-executor

          image: gcr.io/spark-operator/spark-executor:v2.4.5

          env:

            - name: SPARK_K8S_EXECUTOR_POD_NAME

              valueFrom:

                fieldRef:

                  fieldPath: metadata.name

            - name: SPARK_CONF_DIR

              value: "/opt/spark/conf"

          volumeMounts:

            - name: spark-config-volume

              mountPath: /opt/spark/conf

      volumes:

        - name: spark-config-volume

          configMap:

            name: spark-config

确保替换以上配置中的镜像版本和Spark作业的jar路径以及参数。这些YAML文件定义了Spark作业在Kubernetes上的基本部署,包括配置、驱动器和执行器的部署。

要运行这些部署,只需将这些YAML文件应用到你的Kubernetes集群:

kubectl apply -f spark-config.yaml

kubectl apply -f spark-driver.yaml

kubectl apply -f spark-executors.yaml

这将启动一个Spark作业,其中包括一个Driver和多个Executor。Kubernetes将负责调度和管理这些容器的生命周期。

猜你喜欢

转载自blog.csdn.net/Rverdoser/article/details/143487732