随着ACL 2024大会的圆满落幕,本文将重点介绍会议中涉及的与Retrieval-Augmented Generation(RAG)相关的论文,探索这一领域最新的研究成果和发展趋势。
Call Me When Necessary: LLMs can Efficiently and Faithfully Reason over Structured Environments
https://aclanthology.org/2024.findings-acl.254.pdf
文章首先介绍了LLMs在处理这类任务时的挑战,即需要进行多跳推理,将自然语言话语与结构化环境中的实例相匹配。
在推理路径生成阶段,LLMs根据问题和给定的主题实体生成初始推理路径。在实例化阶段,系统尝试将推理路径与结构化环境匹配,并在遇到错误时收集错误信息。最后,在编辑阶段,LLMs利用这些错误信息来修正推理路径。
LLM as Prompter: Low-resource Inductive Reasoning on Arbitrary Knowledge Graphs
https://aclanthology.org/2024.findings-acl.224.pdf
KG归纳推理的一个关键挑战是处理文本和结构信息都匮乏的低资源场景。为了解决这一挑战,作者提出了利用大型语言模型(LLMs)生成图结构提示来增强预训练的图神经网络(GNNs),从而为KG归纳推理方法带来新的方法论见解,并在实践中具有很高的通用性。
A + B: A General Generator-Reader Framework for Optimizing LLMs to Unleash Synergy Potential
https://aclanthology.org/2024.findings-acl.219.pdf
扫描二维码关注公众号,回复: 17497929 查看本文章![]()
提出了一个名为“A + B”的框架,旨在优化大型语言模型(LLMs)以释放协同潜力。这个框架通过将生成器(generator)和阅读器(reader)的角色分开,以提高LLMs在知识密集型任务中的性能和安全性。
文章阐述了“A + B”框架,其中A代表生成器,B代表阅读器。生成器A负责产生与输入查询相关的上下文,需要高度的事实准确性;而阅读器B则负责解释生成的上下文以提供适当的响应,需要认知推理和与人类偏好的一致性。
Uncovering Limitations of Large Language Models in Information Seeking from Tables
https://aclanthology.org/2024.findings-acl.82.pdf
文章介绍了一个名为TabIS(Table Information Seeking)的新基准测试,旨在评估大型语言模型(LLMs)在表格信息检索(TIS)方面的能力。TabIS包含三种典型的TIS场景,并采用单选题格式以确保评估的可靠性。通过对12个代表性LLMs的广泛实验。
TEXT2DB : Integration-Aware Information Extraction with Large Language Model Agents
https://aclanthology.org/2024.findings-acl.12.pdf
文章将信息提取的输出与目标数据库(或知识库)进行整合。这项任务需要理解用户指令来确定提取内容,并根据给定的数据库/知识库架构动态适应提取方式。
设计的框架包括与数据库交互的观察者组件、生成基于代码的计划的规划者组件,以及在执行前提供代码质量反馈的分析器组件。
Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs
https://aclanthology.org/2024.findings-acl.11.pdf
Graph-COT的每次迭代包括三个子步骤:LLM推理、LLM-图交互和图执行。文章还包含了数据集的创建过程,包括数据收集、问题模板设计、使用GPT-4生成多样化的问题表达,以及如何从图中自动生成答案。
Citation-Enhanced Generation for LLM-based Chatbots
https://aclanthology.org/2024.acl-long.79.pdf
文章介绍了一种名为Citation-Enhanced Generation (CEG)的新型方法,旨在减少大型语言模型(LLM)聊天机器人在生成回答时可能出现的虚构内容。
Retrieval-Augmented Retrieval: Large Language Models are Strong Zero-Shot Retriever
https://aclanthology.org/2024.findings-acl.943.pdf
文章提出了一种名为“Large language model as Retriever (LameR)”的方法,它利用大型语言模型(LLM)来改善零样本(zero-shot)情况下的大规模信息检索性能。LameR的核心思想是通过提示(prompting)LLM,将查询及其潜在答案结合起来,以增强查询并提高检索质量。
ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models
https://aclanthology.org/2024.findings-acl.122.pdf
文章提出了ChatKBQA,这是一个新颖的生成-检索KBQA框架,它首先使用微调的大型语言模型(LLMs)生成逻辑形式,然后使用无监督检索方法检索和替换实体和关系,以更直接地改进生成和检索。
Llama2Vec: Unsupervised Adaptation of Large Language Models for Dense Retrieval
https://aclanthology.org/2024.acl-long.191.pdf
Llama2Vec的核心思想是利用两个预文本任务:EBAE(基于嵌入的自编码)和EBAR(基于嵌入的自回归),来促使LLMs生成能够代表输入文本全局语义的嵌入向量。这种方法简单、轻量级,但非常有效。
MINPROMPT: Graph-based Minimal Prompt Data Augmentation for Few-shot Question Answering
https://aclanthology.org/2024.acl-long.16.pdf
文章介绍了一种名为MINPROMPT的新型数据增强框架,它针对少量样本问答(Few-shot Question Answering, QA)任务,旨在提高问答模型的效率和性能。MINPROMPT通过图算法和无监督问题生成技术,从原始文本中提取最有意义的问答训练样本。
-
句子图构建模块:利用句子图表示来结构化原始文本,通过图算法识别出覆盖最多信息的句子子集。
-
数据选择模块:应用近似最小支配集算法来确定最小的句子集合,以覆盖所有共享实体。
-
问题生成模块:将选定的事实句子转换成问答对,进一步转换成提示,为QA模型提供高质量、信息丰富的训练实例。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。