在前面使用阻塞或者非阻塞的方式来读取驱动中按键值都是应用程序主动读取的,对于非阻塞方式来说还需要应用程序通过 poll 函数不断的轮询。最好的方式就是驱动程序能主动向应用程序发出通知,报告自己可以访问,然后应用程序在从驱动程序中读取或写入数据,类似于我们在裸机例程中讲解的中断。Linux 提供了异步通知这个机制来完成此功能,本章我们就来学习一下异步通知以及如何在驱动中添加异步通知相关处理代码。
异步通知简介
我们首先来回顾一下“中断”,中断是处理器提供的一种异步机制,我们配置好中断以后就可以让处理器去处理其他的事情了,当中断发生以后会触发我们事先设置好的中断服务函数,在中断服务函数中做具体的处理。比如我们在裸机篇里面编写的 GPIO 按键中断实验,我们通过按键去开关蜂鸣器,采用中断以后处理器就不需要时刻的去查看按键有没有被按下,因为按键按下以后会自动触发中断。同样的,Linux 应用程序可以通过阻塞或者非阻塞这两种方式来访问驱动设备,通过阻塞方式访问的话应用程序会处于休眠态,等待驱动设备可以使用,非阻塞方式的话会通过 poll 函数来不断的轮询,查看驱动设备文件是否可以使用。这两种方式都需要应用程序主动的去查询设备的使用情况,如果能提供一种类似中断的机制,当驱动程序可以访问的时候主动告诉应用程序那就最好了。
“信号”为此应运而生,信号类似于我们硬件上使用的“中断”,只不过信号是软件层次上的。算是在软件层次上对中断的一种模拟,驱动可以通过主动向应用程序发送信号的方式来报告自己可以访问了,应用程序获取到信号以后就可以从驱动设备中读取或者写入数据了。整个过程就相当于应用程序收到了驱动发送过来了的一个中断,然后应用程序去响应这个中断,在整个处理过程中应用程序并没有去查询驱动设备是否可以访问,一切都是由驱动设备自己告诉给应用程序的。
阻塞、非阻塞、异步通知,这三种是针对不同的场合提出来的不同的解决方法,没有优劣之分,在实际的工作和学习中,根据自己的实际需求选择合适的处理方法即可。
异步通知的核心就是信号,在 arch/xtensa/include/uapi/asm/signal.h 文件中定义了 Linux 所支持的所有信号,这些信号如下所示:
在示例代码 53.1.1.1 中的这些信号中,除了 SIGKILL(9)和 SIGSTOP(19)这两个信号不能被忽略外,其他的信号都可以忽略。这些信号就相当于中断号,不同的中断号代表了不同的中断,不同的中断所做的处理不同,因此,驱动程序可以通过向应用程序发送不同的信号来实现不同的功能。
我们使用中断的时候需要设置中断处理函数,同样的,如果要在应用程序中使用信号,那么就必须设置信号所使用的信号处理函数,在应用程序中使用 signal 函数来设置指定信号的处理函数,signal 函数原型如下所示:
sighandler_t signal(int signum, sighandler_t handler)
函数参数和返回值含义如下:
signum:要设置处理函数的信号。
handler:信号的处理函数。
返回值:设置成功的话返回信号的前一个处理函数,设置失败的话返回 SIG_ERR。
信号处理函数原型如下所示:
typedef void (*sighandler_t)(int)
我们前面讲解的使用“kill -9 PID”杀死指定进程的方法就是向指定的进程(PID)发送SIGKILL 这个信号。当按下键盘上的 CTRL+C 组合键以后会向当前正在占用终端的应用程序发出 SIGINT 信号,SIGINT 信号默认的动作是关闭当前应用程序。这里我们修改一下 SIGINT 信号的默认处理函数,当按下 CTRL+C 组合键以后先在终端上打印出“SIGINT signal!”这行字符串,然后再关闭当前应用程序。新建 signaltest.c 文件,然后输入如下所示内容:
在示例代码 53.1.1.2 中我们设置 SIGINT 信号的处理函数为 sigint_handler,当按下 CTRL+C向 signaltest 发送 SIGINT 信号以后 sigint_handler 函数就会执行,此函数先输出一行“SIGINT signal!”字符串,然后调用 exit 函数关闭 signaltest 应用程序。
使用如下命令编译 signaltest.c:
gcc signaltest.c -o signaltest
然后输入“./signaltest”命令打开 signaltest 这个应用程序,然后按下键盘上的 CTRL+C 组合键,结果如图 53.1.1.1 所示:
从图 53.1.1.1 可以看出,当按下 CTRL+C 组合键以后 sigint_handler 这个 SIGINT 信号处理函数执行了,并且输出了“SIGINT signal!”这行字符串。
驱动中的信号处理
fasync_struct 结构体
首先我们需要在驱动程序中定义一个 fasync_struct 结构体指针变量,fasync_struct 结构体内容如下:
一般将 fasync_struct 结构体指针变量定义到设备结构体中,比如在上一章节的 imx6uirq_dev结构体中添加一个 fasync_struct 结构体指针变量,结果如下所示:
第 14 行就是在 imx6uirq_dev 中添加了一个 fasync_struct 结构体指针变量。
fasync 函数
如果要使用异步通知,需要在设备驱动中实现 file_operations 操作集中的 fasync 函数,此函数格式如下所示:
int (*fasync) (int fd, struct file *filp, int on)
fasync 函数里面一般通过调用 fasync_helper 函数来初始化前面定义的 fasync_struct 结构体指针,fasync_helper 函数原型如下:
int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
fasync_helper 函数的前三个参数就是 fasync 函数的那三个参数,第四个参数就是要初始化的 fasync_struct 结构体指针变量。当应用程序通过“fcntl(fd, F_SETFL, flags | FASYNC)”改变fasync 标记的时候,驱动程序file_operations 操作集中的 fasync 函数就会执行。
驱动程序中的 fasync 函数参考示例如下:
在关闭驱动文件的时候需要在 file_operations 操作集中的 release 函数中释放 fasync_struct,fasync_struct 的释放函数同样为 fasync_helper,release 函数参数参考实例如下:
第 3 行通过调用示例代码 53.1.2.3 中的 xxx_fasync 函数来完成 fasync_struct 的释放工作,但是,其最终还是通过 fasync_helper 函数完成释放工作。
kill_fasync 函数
当设备可以访问的时候,驱动程序需要向应用程序发出信号,相当于产生“中断”。kill_fasync函数负责发送指定的信号,kill_fasync 函数原型如下所示:
void kill_fasync(struct fasync_struct **fp, int sig, int band)
函数参数和返回值含义如下:
fp:要操作的 fasync_struct。
sig:要发送的信号。
band:可读时设置为 POLL_IN,可写时设置为 POLL_OUT。
返回值:无。
使用示例:
应用程序对异步通知的处理
应用程序对异步通知的处理包括以下三步:
1、注册信号处理函数
应用程序根据驱动程序所使用的信号来设置信号的处理函数,应用程序使用 signal 函数来设置信号的处理函数。前面已经详细的讲过了,这里就不细讲了。
2、将本应用程序的进程号告诉给内核
使用 fcntl(fd, F_SETOWN, getpid())将本应用程序的进程号告诉给内核。
3、开启异步通知
使用如下两行程序开启异步通知:
flags = fcntl(fd, F_GETFL); /* 获取当前的进程状态 */ fcntl(fd, F_SETFL, flags | FASYNC); /* 开启当前进程异步通知功能 */
重点就是通过 fcntl 函数设置进程状态为 FASYNC,经过这一步,驱动程序中的 fasync 函数就会执行。
实验程序编写
具体参考正点原子《第五十三章 异步通知实验》
本文暂略。