5G关键性能指标、架构、系统与服务需求

关键性能指标、架构、系统和服务需求

不同与前几代试图提供通用用途的3GPP系统框架,5G系统预计将为各种不同的服务、流量模式和最终用户统计数据。

几份产业引导5G白皮书,特别是来自下一代移动网络联盟的白皮书描述了一种多用途5G系统,能够同时支持各种需求的组合,如可靠性、延迟、吞吐量、定位和可用性,以支持不同的用例和部署场景。通过引进接入网和核心网的新技术,通过可配置、灵活和可扩展的网络资源分配,这些革命性的系统将可以实现。除了增加灵活性和优化,5G系统需要支持严格的延迟、可靠性、吞吐量等关键性能指标(KPI)。无线接入网络的增强有助于满足这些KPI,以及核心网络的改进,如网络切片、网络内缓存和更接近终端节点的托管服务。灵活的网络运营是5G系统的基石,支持这种灵活性的新功能包括NFV、网络切片、SDN、网络可伸缩性和无缝移动性。其他网络运营需求解决了不可缺少的控制和数据平面资源分配效率,以及通过在终端用户和应用服务器之间采用最佳路由策略来优化服务交付的网络配置。加强收费和安全机制对接入网络的新型终端进行管理。

移动宽带接入机制的增强旨在满足一系列新的KPI,这些KPI涉及高数据率、高用户密度、高用户移动性、高度可变的数据率、灵活的部署选项以及改善的覆盖范围。高数据率是由流媒体服务(如视频、音乐和用户生成内容)、交互式服务(如增强现实)和一些物联网用例等数据使用的增加所驱动的。这些服务的可用性对用户体验数据速率和延迟有严格的要求,以满足某些QoS要求。此外,增加对体育场馆、城市地区和交通枢纽等人口密集地区的覆盖已成为行人和车辆使用者的基本需求。与流量和连接密度相关的新KPI使每区域的高用户流量(流量密度)和高连接数量的数据传输(UE密度或连接密度)成为可能。许多终端被期望支持各种服务,这些服务可以交换非常大(如流视频)或非常小(如传感器数据突发)的数据量。5G系统需要以资源高效的方式管理这种服务可变性。所有这些案例都引入了新的部署要求,包括室内和室外、局域互联、高用户密度、广域互联以及在高速场景下移动的终端。

5G KPI的另一个方面包括对延迟和可靠性的各种组合的要求,以及更高的定位精度。这些KPI由商业和公共安全服务的支持驱动。在商业方面,工业控制、工业自动化、飞行器控制和增强/虚拟现实都是此类服务的例子。诸如飞行器控制等服务将需要更精确的定位信息,包括高度、速度和方向,以及平面坐标。除了对增强KPI的要求之外,对大规模连接的支持还带来了许多新的要求。物联网范例的扩展需要在所有系统组件(如终端、物联网设备、接入网和核心网)中显著提高资源效率。5G系统还将提高其能力,以满足新兴V2X应用所需的KPI。对于这些高级应用程序,数据速率、可靠性、延迟、通信范围和速度等要求变得更加严格。这些应用有特定的技术要求,需要通过复杂的5G无线电接口设计和使用适当的频带来解决,以确保始终满足其要求。

性能指标定义

为了量化某些技术解决方案将如何影响最终用户体验,或者在期望的用例中5G系统的性能如何,需要具体的性能指标进行评估。以下部分提供了用于测量和基准测试5G系统性能的性能指标的定义。这些指标与描述主要5G用例和某些部署场景的KPI相关。

峰值数据速率:以bit/s来描述,这是物理层在无错误条件下可实现的最大(理论上的)数据速率。它表示当对应链路方向的所有可分配的无线电资源都被利用时,分配给单个用户终端的接收数据位,不包括用于物理层同步、参考信号、保护频带和保护时间的开销资源。峰值数据速率是为单个移动站定义的。对于单个频段,它与该频段的峰值谱效率有关。

设W为信道带宽,SEp为该波段的峰值频谱效率。然后给出了用户峰值数据率Rp:

峰值频谱效率和可用带宽在不同的频率范围可能有不同的值。如果跨多个频带聚合带宽,则将对这些频带上的峰值数据速率进行累加。

用户面延迟:单向用户面延迟定义为无线接入网在将IP包从源端传输到目的端时引入的延迟。用户面延迟也称为传输延迟,是指源终端IP层上可用的SDU包与目的终端IP层上可用的SDU包之间的传输时间,这取决于链路方向。假设用户终端处于连接模式且网络在无负载状态下运行,则用户平面包延迟包括上行或下行链路方向上相关协议和控制信令引入的延迟。这个需求是为eMBB和URLLC用例中的评估目的而定义的。

控制面延迟:控制面延迟是终端从空闲状态过渡到连接状态的时间。换句话说,在访问链路上建立控制平面和数据承载所花费的时间不包括下行寻呼延迟和回程信令延迟。控制平面时延包括随机接入过程持续时间、上行同步时间、连接建立和HARQ重传间隔、数据承载建立(包括HARQ重传)。

移动性:移动性是指在终端上能够实现或维持某项QoS的最大速度。IMT-2020定义了以下四种移动级别:

静止:0公里/小时

步行:0~10公里/小时

车辆:10~120公里/小时

高速车辆:120~500公里/小时

可靠性:可靠性是指在预定的时间内,传输一定数量的用户流量,且成功率高的能力。

能量效率:网络能量效率是指一个网络在不影响网络性能的情况下,尽量减少无线接入(和/或核心)网络运作的能量消耗的能力。设备能量效率(RAN方面)是指网络能够将用户设备通信子系统(调制解调器)消耗的能量降到最低。网络和设备的能量效率是相关的,因为它们相互影响数据在负载网络中的有效传输。当设备与设备之间没有数据传输时,可以降低设备的能耗。平均频谱效率证明了负载网络中数据传输的有效性。

覆盖:蜂窝系统中的下行或上行覆盖是通过发射机的发射天线和接收机的接收天线之间的最大耦合损耗来测量的。更具体地说,最大的耦合损耗之间的上行或下行用户设备和基站天线连接器为参考数据定义160个基点,数据速率的测量出/入点MAC层的上行和下行。3GPP NR覆盖的目标是最大耦合损耗为164 dB。

切换中断时间:该度量是指用户终端在穿越蜂窝网络中的两个或多个小区边界时,不能与任何基站交换用户平面数据包的最短时间间隔。切换中断时间包括在移动站和无线接入网之间执行任何无线接入网过程、RRC信令协议或其他消息交换所需的时间。这个基准只适用于eMBB和URLLC使用场景,在这些场景中需要有效的无缝切换中断时间(零秒)。

测试环境

在技术标准的开发过程中,通常要在特定的信道传播条件、单元布局和与所考虑的部署场景相关的技术参数集下验证候选技术是否满足服务和系统需求。因此,测试环境是使用预定义的通道传播模型、拓扑和系统配置的实际部署场景的近似表示。在候选技术的评估中经常开发和使用适当的信道模型,以允许在不同的测试环境中对无线电传输的传播条件进行真实的建模。信道模型需要覆盖5G网络部署所需的所有测试环境和使用场景。

已经定义了几个与5G主要用例(即eMBB、mMTC、URLLC)相关的测试环境,将对候选5G无线接入技术进行评估,其中包括以下内容:

IMT-2020测试环境到使用场景的映射如表1所示。这种映射基于每个测试环境的关键特性与用例的关键特性之间的相似性。在过去的二十年里,3GPP和ITU-R技术工作组为确定测试环境及其相关参数集作出了重大努力,以促进无线接入技术的特性描述。

表1 测试环境和使用场景的映射

所选择的测试环境对应的参数集如表2所示。选择表2所示的配置是为了确保在相关测试环境中满足性能要求,同时考虑gNB/TRP和/或在该环境中运行的终端的服务和实际限制(例如,形状因素、硬件和安装)。该表中的DL+UL带宽是指频分双工(FDD)系统中DL和UL之间的对称带宽分配,以及TDD系统中通过时域切换用于DL或UL的聚合系统带宽。

表2 测试环境的选定参数

高层架构需求

支持5G中不同UE类型、服务和技术的愿望一直在推动3GPP中的NR标准的发展。5G系统的主要目标是支持新的部署场景,并满足不同市场细分的需求。如前所述,5G系统某些关键特征比如支持各种无线接入技术、可伸缩和可定制的网络架构,严格的KPI,灵活性和可编程性,和资源效率(在用户和控制飞机)以及无缝流动人口稠密的异构环境中,支持实时和非实时的多媒体服务和应用程序与质量提高的经验(QoE)。因此,下一代网络的架构必须解决一些关键的设计原则,以满足上述的要求。

以下是由3GPP系统架构工作组在5G标准开发的早期阶段确定的关键架构重点领域及其相关需求列表:

猜你喜欢

转载自blog.csdn.net/Covc0910/article/details/139936640