第五章:实战项目案例
5.1 项目一:车辆检测与计数
5.1.1 项目描述
利用视频流中的车辆检测,统计通过某一区域的车辆数量。
5.1.2 环境准备
- OpenCV
- 预训练YOLOv4模型
1. 加载模型与参数设置
python
import cv2
import numpy as np
# 加载YOLOv4模型
net = cv2.dnn.readNet("yolov4.weights", "yolov4.cfg")
layer_names = net.getUnconnectedOutLayersNames()
# 加载类别名称
with open("coco.names", "r") as f:
classes = f.read().strip().split("\n")
2. 目标检测与区域计数
python
cap = cv2.VideoCapture("traffic.mp4")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# 创建图像Blob
blob = cv2.dnn.blobFromImage(frame, scalefactor=1/255.0, size=(416, 416), swapRB=True)
net.setInput(blob)
outputs = net.forward(layer_names)
# 检测并绘制边界框
for output in outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5 and classes[class_id] == "car":
center_x, center_y, width, height = (detection[:4] * np.array([w, h, w, h])).astype("int")
x, y = int(center_x - width / 2), int(center_y - height / 2)
cv2.rectangle(frame, (x, y), (x + width, y + height), (0, 255, 0), 2)
cv2.imshow("Vehicle Detection", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
5.2 项目二:图像拼接与全景图生成
5.2.1 项目描述
利用多张重叠图像,生成一幅完整的全景图。
1. 读取输入图像
python
images = [cv2.imread(f"image_{i}.jpg") for i in range(1, 4)]
2. 检测与匹配特征点
python
# 使用SIFT检测特征
sift = cv2.SIFT_create()
keypoints, descriptors = zip(*[sift.detectAndCompute(img, None) for img in images])
# 匹配特征点
bf = cv2.BFMatcher()
matches = [bf.knnMatch(descriptors[i], descriptors[i+1], k=2) for i in range(len(images) - 1)]
# 筛选匹配点
good_matches = []
for m, n in matches[0]:
if m.distance < 0.75 * n.distance:
good_matches.append(m)
3. 计算单应性并拼接图像
python
src_pts = np.float32([keypoints[0][m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([keypoints[1][m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
H, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
result = cv2.warpPerspective(images[0], H, (width, height))
cv2.imshow("Panorama", result)
cv2.waitKey(0)
cv2.destroyAllWindows()
5.3 项目三:实时手势识别
5.3.1 项目描述
通过摄像头捕获视频流,实时检测手势类型。
5.3.2 具体实现
1. 使用MediaPipe识别手部
python
import mediapipe as mp
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(min_detection_confidence=0.7, min_tracking_confidence=0.7)
mp_draw = mp.solutions.drawing_utils
cap = cv2.VideoCapture(0)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = hands.process(frame_rgb)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:
mp_draw.draw_landmarks(frame, hand_landmarks, mp_hands.HAND_CONNECTIONS)
cv2.imshow("Hand Gesture Recognition", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()