YOLOv10改进策略【Conv和Transformer】| 引入CVPR-2024 RepViT 轻量级的Vision Transformers模块 RepViTBlock

一、本文介绍

本文记录的是基于RepVit的YOLOv10轻量化改进方法研究RepVit的网络结构借鉴ViT的设计理念,通过分离的token mixechannel mixer减少推理时的计算和内存成本,同时减少扩展比率并增加宽度,降低延迟,并通过加倍通道来弥补参数大幅减少的问题,在轻量化的同时提高准确性。


专栏目录:YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv10改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!